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Abstract

When interacting with a regular desktop computer, indirect devices
such as a mouse or keyboard are used to control the computer. Results of
the interaction are displayed on a monitor. Current operating systems are
restricted to one pointing device. With the introduction of multi-touch,
a new form of human computer interaction is introduced. Multi-touch
combines display technology with sensors which are capable of tracking
multiple points of input. The idea is that this would allow users to interact
with the computer in a natural way.

Due to recent innovations multi-touch technology has become afford-
able. For this project a camera based multi-touch device has been con-
structed at the Scientific Visualization and Virtual Reality group of the
Section Computational Science of the Universiteit van Amsterdam. To
perform multi-touch point tracking we used Touchlib, a free open source
multi-touch framework.

To demonstrate the possibilities of multi-touch input technology we
created new rich media applications which are controlled by gestures. Ex-
isting software can benefit from multi-touch technology, this is demon-
strated in a real-time fluid simulation model and the geographical appli-
cation NASA World Wind. Multi-touch systems are often stand alone
systems that do not have external input devices attached. In order to
simplify common tasks, a gesture recognition engine has been designed
(Gesturelib).

Through a set of experiments we evaluate how multi-touch input per-
forms on tasks compared to conventional mouse input. Unlike interaction
on a desktop computer multi-touch allows multiple users to interact with
the same devices at the same time. We present measurements that show
how collaboration on a multi-touch table can improve the performance for
specific tasks.
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Preface

In this preface, I would like to explain how the thesis subject was chosen. Since
high school I have had an interest in the concept of interactive graphics, though at
that point the internet was in its early stages and virtual reality was more a science
fiction concept than an actively developed topic. After following the master course
Scientific Visualization and Virtual Reality I knew that I wanted to do a subject
related to virtual reality. After a personal appointment with Robert Belleman, he
showed a few subjects which I could take as a master project. The subjects were
related to computing with graphics hardware (GPU), augmented reality, tiled panel
displays and programming applications for the virtual reality environment the CAVE.
Unfortunately the GPU project was not available by the time I had to make a decision,
the other proposals seemed less attractive. While discussing the proposals, Robert
showed a paper of Jeff Han explaining multi-touch sensing using FTIR and the multi-
touch open source project Touchlib. A few weeks later Jeff Han was featured on
TED Talks (Technology, Entertainment, Design conference) in which he explains the
technique and capabilities of multi-touch devices.

During the same period of my thesis subject proposals, NEMO Science Center
asked the Scientific Visualization and Virtual Reality group of the Section Compu-
tational Science of the Universiteit van Amsterdam if it was possible to develop a
virtual reality device for public display. However, the problem with virtual reality
devices is that it would only allow a few people to experience virtual reality at the
same time. In order to see stereoscopic images special goggles are required which
makes the technique less attractive and kids proof. While multi-touch can not be
considered as virtual reality, it could provide a platform to get children interest in
science and technology.

We decided to combine the multi-touch research project to fit the requirements for
NEMO. For this project I would do research on the performance of interaction and
collaboration on multi-touch panel displays and after completing the experiments,
the panel would be moved to NEMO running science related applications.
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CHAPTER 1

Introduction

Multi-touch displays are interactive graphics devices that combine camera and tactile
technologies for direct on-screen manipulation. Multi-touch technology is not entirely
new, since the 1970s it has been available in different forms. Due to the improvement
of processing power of modern desktop computers, multi-touch technology does no
longer require expensive equipment.

Modern computer interaction consists of a monitor, keyboard and a mouse. Lim-
ited by the operating system, it allows us only to control a single pointer on the screen.
With multi-touch, multiple input pointers are introduced to the system which all can
be controlled independently. Depending on the size of the display multi-touch allows
multiple persons to interact with the same display at the same time.

1.1 Existing multi-touch technologies

Since the 1970s several research groups have done research on (multi-)touch sensitive
surfaces. Multiple patents [9, 20, 23, 25, 41] demonstrate how camera/sensor based
touch sensitive surfaces can be constructed.

In 1997 Matsushita et al. presented the HoloWall [24]. The HoloWall is a finger,
hand, body and object sensitive wall. Multiple users can interact with the surface on
the front side of the wall. The wall is made out of glass with a rear projection material
attached. Behind the wall a digital projector is placed for display. On the same side
as the digital projector a camera and an infrared illuminator is placed. When a user
or object touches the wall, it reflects infrared light which is captured by the camera.

The Mitsubishi DiamondTouch table [8] is a multi-touch and multi-user sensitive
input device. The table works by transmitting an electrical signal to the array of
rows and columns embedded in the surface. The DiamondTouch can be used by
four persons at the same time. Each user sits on a chair which has a receiver unit
attached. The user makes physical contact with the receiver unit. When a user
touches the surface, a small current will flows between the array of rows and columns
and the receiver unit (through the user’s body). The receiver unit can now determine
which parts are being touched by which person. The DiamondTouch uses a projector
that projects the display on top of the table. The system allows users to control
applications with gestures [47]. It is capable of detecting gestures based on touch and
gestures based on the shape of the hand.

The SmartSkin [29] is a multi-touch sensitive input device. The sensitive layer
consists out of grid-shaped transmitter and receiver electrodes (copper wires). The
vertical wires are the transmitter electrodes, the horizontal wires are the receiver
electrodes. At predefined intervals a wave signal is transmitted to the transmitter
electrodes (only one transmitter per interval). The receiver will receive the wave
because it acts as a (weak) capacitor. When the grid is touched by a finger, the
signals wave becomes weaker. By continuously measuring the signal strength it is
possible to detect touch. The system uses top projection for the display. When using
a high density grid, the system is capable of detecting shapes of objects.

In 2005 the reacTable [1, 19] was introduced. The reacTable is a collaborative
electronic music instrument with a table top tangible multi-touch interface. The
table is capable of tracking fiducial markers (see Figure 1.1) which allows users to
add instruments and control them by rotating the fiducial markers. By moving and
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combining multiple markers instruments can be combined to create unique sounds
and music. The table uses infrared light emitters to illuminate the surface. When
the user adds an object with a marker on the table, it will reflect the pattern to the
camera which can be processed by the computer. The latest version also allows finger
multi-touch input.

Figure 1.1: Patterns called fiducial markers are attached to physical objects that are
recognized and tracked by the reacTable (image taken from [31]).

The JazzMutant Lemur [18] is a standalone multi-touch device designed to control
audio and media applications. Because all controls (knobs and sliders) are virtually
created on the display, it allows the user to customize the interface to the user’s needs.
The Lemur communicates over the built-in ethernet interface.

Wilson’s [44] Touchlight is a camera based input device which allows gesture based
interaction. The system uses a vertical surface made out of acrylic which has rear-
projection material attached. Behind the surface a projector is placed for display.
The projection material of the Touchlight is more translucent than the one used on
the HoloWall. In order to eliminate the background, the system uses two cameras and
one infrared illuminator to sense interaction. When a hand reaches near the surface,
the hand will be reflecting infrared light. The cameras are placed on different angles,
one on the left and one on the right. Due to their positioning, it is required to correct
the image for lens and perspective distortion. When merging both images into one,
objects near the screen will merge (amplify) and objects further away from the screen
will become less visible. Unlike the previously described input devices, this system
acts more as a full hand gesture based interaction device rather than a (multi-)point
input device. The system has a microphone built in which can detect vibration of the
screen. This allows users to interact with the system by tapping the display.

Another device created by Wilson [45] is the PlayAnywhere input device. The
PlayAnywhere is a top projection camera based input device which allows multi-touch
user interaction. The system uses a short-throw digital projector for top projection, an
infrared illuminator to illuminate the environment and a camera to view the desk from
above. When a user interacts with the surface, his hands will become illuminated.
In order to perform finger tracking, the contour of the illuminated hand is analyzed.
Because the hand is illuminated from above, it leaves a shadow depending on the
distance between the surface and the hand or fingers. To perform touch detection,
the contour of the fingertip is compared with the results of the fingertip shadow. If
near the fingertip a shadow is present, the system will detect this as hover. If no
shadow is present, the system will detect it as a touch. The benefit of this system is
that it allows any flat surface to transform into a multi-touch input system.

In 2005 Han [13, 14] presented a low cost camera based multi-touch sensing tech-
nique. The system uses the technique called Frustrated Total Internal Reflection
(FTIR, described in more detail in Section 2.2.1) which involves trapping infrared
light in a sheet of acrylic. When touching the sheet, the touched spot will frustrate
the trapped light causing it to leak out of the sheet. When pointing a camera at the
sheet it is possible to view where infrared light is “leaking” and recognize touch.

Early 2007 Apple presented a new cellular phone, the Apple iPhone. Where other

2
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touch based cellular phones only allow single point interaction, the iPhone uses multi-
touch technology to control the phone. The iPhone senses touch by using electrical
fields. On touch, the electrical field will change value which is measured. This allows
the iPhone to detect which part of the phone is touched.

Mid 2007 Microsoft presented their version of a multi-touch table, MS Surface [7].
The table looks like a coffee table with an interactive surface. The technique used
in the table is similar to the HoloWall. A diffuser is attached to the screen material.
The table is illuminated with infrared light from the back. When a user touches the
table, it will reflect infrared light which is captured by the cameras inside the table.
Because of the use of multiple cameras, the input resolution is high enough to detect
objects. Microsoft has demonstrated how fiducial markers can be used to tag objects
and allow specific interaction with the table.

A few months after the press release of MS Surface, Microsoft Research Cambridge
[17] demonstrated a multi-touch system on a notebook LCD panel. The construction
of ThinSight consists of an array of retro-reflective optosensors which are placed
behind the LCD panel. Each sensor contains an infrared light emitter and an infrared
light detector. When an object touches the LCD panel, it will reflect infrared light
which the detector can notice. Because this technique relies on reflecting infrared
light, the system allows interaction with fiducial markers.

1.2 Previous studies on the performance of (multi-)touch
input techniques

In 1985 Buxton [5] published a paper on touch sensitive input devices. He points
out important issues when using touch technology. Buxton describes a three-state
model for input devices. In state 0 no physical contact is made with the input device,
in state 1 the input device is tracking (movement of mouse cursor) and in state 2
the input device is dragging (button pressed). As an example, Buxton describes a
rubber-band line drawing task with a one button mouse and a touch tablet. When
using the mouse, a user starts with state 0. After grabbing the mouse and moving
the mouse cursor to a proper position it changes to state 1. By pressing the button
and moving the mouse the state changes to 2. When the user completes the task, we
revert to state 1 and finally state 0 (releasing contact with mouse). When performing
the same task on a touch tablet it is only possible to perform touch or no touch.
Because only two states are available it is only possible to bind one state (1 or 2) to
the touch. When state 1 is bound to touch it is only possible to set the mouse cursor
on a specific position. If state 2 is bound, touching the device will cause immediate
selection. Buxton suggests that this problem can be solved if the used touch table
would be able to sense different levels of pressure. Another problem when using
touch tablets is the friction between the user’s finger and tablet surface. If the user
is required to perform tasks that require long motions with high pressure, this causes
inconvenience to the user.

Early research on bimanual input has been done by Buxton [4, 43]. His exper-
iments focused on the performance of two-handed input devices. The experiments
included tasks such as object manipulation and selecting lines in large text docu-
ments. During the experiments Buxton compared the amount of parallel activity
with the time needed to complete the task. Results proved that the efficiency of
subject performance is related to the degree of used parallelism. Test subjects had
no difficulty in performing the task using both hands.

In 2007 Forlines et al. [12] compared the performance of direct-touch and mouse
input on table top displays. The experiments included a two dimensional Fitts Law
test and an object manipulation test. For this test a Mitsubishi DiamondTouch
was used for direct-touch and two mouse devices were used to perform bimanual
object manipulation with a mouse. The results of the experiment show that users
benefit from direct-touch when performing bimanual tasks. The results of the mouse
input show that it only performs better on tabletop task which required single point
interaction.

Terrenghi et al. [34] compared the performance of completing a task in a physical
environment and a virtual environment on a multi-touch table. The test participants

3
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in the experiment were asked to complete an experiment in which a puzzle had to be
solved and an experiment in which photos had to be sorted in three different groups.
Results showed that users are faster at solving puzzles in a physical environment,
but performance in the sorting photos task increased on the multi-touch table. In
overall it was faster to complete both tests in a physical environment than in a digital
one. While the users performed the tasks, the amount of one handed input and
bimanual input was recorded. Results show that users are more likely to perform
bimanual input when touching physical object than using bimanual input on touch
screen devices.

1.3 Overview of this work

Recent publications have shown that multi-touch displays have a potential to revo-
lutionize human-computer interaction in the way that they allow intuitive interac-
tion with applications through direct manipulation of graphical constructs. Several
research groups have demonstrated that the performance of simple tasks through
multi-touch displays show great improvement over conventional methods. Unfortu-
nately, most interactive graphical applications that exist today are not able to exploit
this potential because they are designed for a single pointer device such as the mouse.
This research project has been divided into four parts:

1.3.1 The design and construction of a camera based multi-touch device

Currently no camera based multi-touch devices are available on the market. In or-
der to perform the required experiments it is necessarily to design and construct a
multi-touch device from scratch. The project materials are funded by NEMO (sci-
ence center) and the Scientific Visualization and Virtual Reality group of the Section
Computational Science of the Universiteit van Amsterdam.

1.3.2 The design and implementation of a gestural interaction library

With the introduction of multi-touch, gesture based interaction has become a new
standard in the interaction with applications. In order to use gestures on a multi-
touch device it is required to design and implement a multi-touch gestural interaction
library. The library will retrieve information from the used multi-touch tracking
software and process them into gestural primitives. Detected gestures are exposed
to application developers through an easy to use application programming interface
(API).

1.3.3 Implementation of test case applications

In order to demonstrate the input capabilities and benefits of a multi-touch device
a set of (example) applications will be developed. The applications should show
examples of collaborative tasks and gesture based interaction on the device.

1.3.4 Performance evaluation of multi-touch enabled tasks

To compare the performance of the multi-touch input device in the field of human-
computer interaction a set of tasks will be designed and developed. The tasks focus
on point and selection tasks (as seen in regular desktop computing), gesture based
interaction and collaborative problem solving.

1.4 Overview of this thesis

This thesis focuses on the construction, capabilities and performance of a multi-touch
input device in comparison with traditional desktop computing. Chapter 2 gives an
introduction into the currently available camera based multi-touch techniques and
design considerations based on our experiences. Chapter 3 explains the software part
of the multi-touch system. This includes image processing, blob tracking and gesture
recognition. Chapter 4 demonstrates a few of the multi-touch applications that have
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been developed during this project. Chapter 5 describes the performance evaluation
experiments and its results. Chapter 6 contains the result discussion and the final
chapter (7) includes the conclusion and future work.

5
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CHAPTER 2

The design and construction of a multi-touch
device

For this research project two multi-touch input devices have been built utilizes differ-
ent techniques. Both multi-touch detection techniques use a camera. The selection of
which technique to use depends on the type of environment in which the device will
be used and on the type of applications it will be running. This chapter will give a
brief explanation on how these techniques work, which design considerations we took
and the problems we faced during construction.

2.1 Design considerations

Depending on the target audience a multi-touch panel technique can be selected. Due
to collaboration between the NEMO Science Center and the Universiteit van Ams-
terdam shared design considerations had to be made. According to the collaboration
agreement the multi-touch panel would first be constructed at the UvA and used for
this thesis research project. After finishing these tasks the multi-touch panel will be
displayed to the public at the NEMO Science Center.

The NEMO Science Center had the following requirements for an interactive
graphics device:

• NEMO encourages the audience to participate in experiments, the system should
be attractive.

• The system needs to be suitable for an audience from 7 up to 70 years.

• The system should encourage users to playing together.

• The system needs to be a standalone device.

• The hardware needs to be ‘child proof’, which means it is robust and easy to
use.

The requirements based on the thesis subject were to construct a reliable multi-
touch panel which would allow multiple users to collaboratively solve tasks.

Based on these requirements it was decided to create a table based horizontal
multi-touch panel. A table shaped system would allow multiple persons to interact
with the multi-touch panel in a familiar way.

2.2 Camera based multi-touch techniques

Camera based multi-touch devices share the same concept of processing and filtering
captured images on patterns. In general the interaction can be described as the
pipeline in Figure 2.1. The pipeline begins when the user views the scene on the panel
and decides to interact. To interact with the device, the user touches the device panel.
On the hardware level the camera registers touch. Because the captured frame might
not only include the contact points but also a (static) background, it is required to
perform image processing on each captured frame. The captured frame is converted to
a gray scale image and the static background is removed by subtracting the current
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frame with a reference frame. As a result the frame only shows white contours
(blobs) which are the points of contact. By tracking these blobs the system becomes
capable of sensing touch. In order to track the blobs, the positions are transmitted
to the blob tracker which matches blobs from earlier frames with the current frame.
After processing, events will be triggered which can be used in a multi-touch capable
application. The application modifies objects in the current scene according to the
new blob positions. The result is returned to the user through the display.

The performance of a camera based multi-touch device depends on the used hard-
ware and software. When a user touches a multi-touch device, it expects the device
to respond directly. The responsiveness of the device depends on the time it needs
to process the user’s input and present the users a result through the display. In the
interaction pipeline two levels are important, the hardware and the software level.
Using a camera which is capable of 30 frames per second allows smooth interaction
with the system. However, this requires a system that can handle image processing
and blob tracking in 1

30 of a second. A combination of smart algorithms implemented
in software and fast hardware helps to minimized the latency and increase the re-
sponsiveness of the device.

Detect input (Camera) Image processing

Blob tracker

Application

Human Hardware Software

View result

Touch (Interact)

Display (DLP Projector)

(Section 2.3)

(Section 2.4)

(Section 3.1.1)

(Section 3.1.2)

(Chapter 4)

Figure 2.1: A graphical overview of the multi-touch interaction pipeline. The indi-
cated sections contain additional information on each part.

2.2.1 Frustrated Total Internal Reflection

Our first prototype [26] was based on the technique called Frustrated Total Internal
Reflection (FTIR) which has been presented by Han [13]. Thin plates of translu-
cent materials such as acrylic have the property of trapping light by reflecting it
continuously on the edges.

“Total Internal Reflection (TIR) is an optical phenomenon that occurs
when a ray of light strikes a medium boundary at an angle larger than the
critical angle with respect to the normal to the surface. If the refractive
index is lower on the other side of the boundary no light can pass through,
so effectively all of the light is reflected. The critical angle is the angle of
incidence above which the total internal reflection occurs.” - Wikipedia
[42]

Infrared light is being used because it is invisible to the human eye but detectable
by digital cameras. In the prototype infrared LEDs were mounted on four sides of the
sheet of acrylic. When the infrared LEDs are turned on, infrared light will become
trapped in the sheet of acrylic. By touching the acrylic the TIR will be frustrated
(because of a changing refractive index) causing infrared light to leak out on the
touched spot. The fingertip will reflect the infrared light to the camera.

Figure 2.2 shows a side view of the construction. Depending on the angle on
which the LEDs emit infrared light, additional baffles are required to prevent ‘leak-
ing’ infrared light reaching the camera. On the rear side (bottom) of the display a
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Baffle

IR LED

Camera
IR bandpass filter

Diffuser

Acrylic sheet

DLP Projector

Total internal reflection

Figure 2.2: Schematic view of the multi-touch panel using frustrated total internal
reflection.

diffuser material is placed for two reasons. First it prevents the camera from seeing
objects behind the screen and thus providing a cleaner stable input signal. Secondly it
functions as a projection screen for the DLP projector. Because touching the display
would frustrate the TIR, there is a small gap between the diffuser and the display
(a few mm). With this basic setup the performance mainly depends on how ‘greasy’
the fingertips of the user are. Wet fingers are able to make better contact with the
surface. Dry fingers and objects will not be able to frustrate the TIR.

To overcome this issue it is recommended to add a ‘compliant layer’ (see Fig-
ure 2.3). Instead of frustrating the TIR by touching the acrylic directly, a compliant
layer is used which acts as a proxy. The compliant layer can be made out of a thin
(1-2 mm) silicon material such as ELASTOSIL c©M 4641 as suggested by van der
Veen [37]. On top of the compliant layer a rear projection material such as Rosco
Gray #02105 is placed. The projection material prevents the compliant layer of be-
coming damaged and also functions as a projection screen. Additionally, this has the
advantage that the fingers touch the projected images directly. With this setup it is
no longer required to have a diffuser on the rear side.

Baffle

IR LED

Camera
IR bandpass filter

Compliant layer

Acrylic Sheet

Rosco Gray

DLP Projector

Total internal reflection

Figure 2.3: Schematic view of the multi-touch panel using frustrated total internal
reflection including improvements to increase touch sensitivity.

Additional improvements can be done by adding an infrared blocking filter (which
prevents infrared light from the environment reaching the camera) and a protective
foil (to protect the projection screen from getting scratched). With these extra layers
the input video signal is very clean. Therefore only a few stages of image processing
are required before touch detection and tracking can be applied.
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Compared to other camera based multi-touch techniques, it requires more effort
to construct a FTIR panel. Other disadvantages include the robustness of the touch
layer and the cost of the compliant and projection materials.

2.2.2 Diffused Illumination

Rear-side Illumination

The second prototype uses a technique called Rear-side Illumination (RI) which is part
of the Diffused Illumination (DI) technique. Based on the technique which is used in
the HoloWall and MS Surface, a diffuser is attached to the rear side of an acrylic or a
glass like material. Instead of illuminating the display material, multiple infrared light
illuminators are placed behind the display pointed straight at the diffuser. A part of
the infrared light will be diffused, another part will pass through the material. When
the display is touched, the fingertip reflects the infrared light back to the camera.
This allows the system to detect touch.

IR illuminatorCamera
IR bandpass filter

Diffuser

Acrylic sheet

DLP Projector

Figure 2.4: Schematic view of the multi-touch panel using rear illumination.

In Figure 2.4 a schematic side view is presented. Compared to FTIR, RI allows
us to create a simple and robust multi-touch capable input device. The RI technique
provides a few extra features. Besides fingertips it is also capable of detecting objects
that reflect infrared light (for example: cellular phones, cards or coffee cups). Another
feature is the ability to detect fiducial markers. Depending on the resolution of the
used camera and the size of these fiducial markers, it is possible to allow tracking of
their position and orientation. This opens up new interaction capabilities in which
physical objects can be detected and recognized to trigger specific software functions.

Because the technique is based on reflection rather than changing the refractive
index, it works with wet and dry fingers. The performance of RI depends on a few
other factors. The most important is the type of diffuser being used (see Appendix A).
It is important that the diffuser does not absorb too much infrared light, if it does the
contrast between the background and the fingertip will be very low. If the diffuser
does not absorb enough infrared light it will be illuminating objects which are near
but not on the screen. This would result in false touch detection.

Since the technique relies on contrast differences, the environment in which the
multi-touch display is placed has a large influence. Direct sunlight or light sources
overhead can decrease the performance of tracking. A captured frame from a RI
based devices requires more stages of image processing filters than FTIR before blob
detection and tracking can be applied.

Front-side Illumination

Another technique based on diffused illumination is called Front-side Illumination
(FI). Like the RI technique it is based on light being diffused. However instead of
using infrared light sources, it depends on the ambient light from the environment.
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With FI the diffuser is attached to the front side of the display. The ambient light
illuminates the diffuser, which from the camera’s point of view, results in an evenly
colored rectangle. By touching the surface, shadows will appear underneath the
fingertips because the ambient light can not reach it.

Camera
IR bandpass filter

Diffuser Acrylic sheet

(Indirect) ambient light

DLP Projector

Shadow

Figure 2.5: Schematic view of the multi-touch panel using front illumination.

Figure 2.5 shows a basic setup for FI. Because the used touch library requires
touched spots to be colored white, a simple invert filter is being applied. FI can
be seen as the cheapest way of creating a camera based multi-touch capable device.
However due to its dependency of evenly distributed light it is less reliable and precise
than FTIR and RI.

2.3 Camera devices

A requirement when using FTIR or RI based techniques is that the camera sensor
is capable of detecting infrared light. The sensitivity of CMOS/CCD image sensors
to infrared light varies. When the camera captures infrared light, the display often
shows this as a bright white spot with a blue/dark purple glow. When choosing a
camera it is recommended to find out which sensor is used and whether the data
sheets are available for this sensor. Most data sheets contain a chapter with the
spectral sensitivity characteristics. Often a graph shows how sensitive the sensor is
to specific wavelengths. In our case we used illuminators which have a wavelength of
880 nm.

The first prototype used a USB based web camera (Philips SPC900NC) which uses
a Sony CCD image sensor (type: ICX098BQ). The spectral sensitivity characteristics
are displayed in Figure 2.6.

Consumer cameras such as the web camera of Philips often contain an infrared
blocking filter to prevent image distortion from ambient lightning. Since the filter
prevents infrared light from reaching the camera sensor, it is required to remove the
filter layer. In some cases it is a detachable filter, in other cases it is either glued on
to the lens or applied as a coating on the camera sensor. The used Philips camera has
the infrared blocking filter glued onto the lens, therefore it was required to replace
the original lens with a new lens.

Whilst high-end consumer USB cameras are capable of transmitting images of
VGA resolution (640×480 pixels) at reasonable frame rates, they often introduce
a latency. Because this reduces the responsiveness of the multi-touch devices it is
recommended to use a FireWire based camera instead.

Our second prototype used the Unibrain Fire-i board camera colour [35]. The
camera uses the same sensor (Sony ICX098BQ) as the Philips camera but due its
design it has a lower latency. Depending on the size of the display and the projected
image it is recommended to use at least a camera running a VGA resolution because
of precision. The frame rate should be at least 30 frames per second to allow smooth
interaction.
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Figure 2.6: The spectral sensitivity characteristics of the Sony ICX098BQ CCD image
sensor (excludes lens characteristics and light source characteristics).

Because the camera only needs to see infrared illuminated objects, an IR band pass
filter is mounted. When the IR band pass filter is mounted, the projected image is
no longer visible. For optimal performance it is recommended to use an (expensive)
band pass filter which matches the IR wavelength of the LEDs. Another (cheap)
solution is using an overexposed developed negative which performs almost the same
as an IR band pass filter.

2.4 DLP projector

When selecting a digital projector it is important to decide which resolution is re-
quired. Depending on which type of applications will be running it is recommended
to use a resolution of at least 1024×768 pixels (XGA). Depending on the projector
type, Digital Light Processing (DLP) or Liquid Crystal Display (LCD), it is impor-
tant to look at the contrast ratio and the amount of lumen (brightness). Since rear
projection is being used the brightness often has to be reduced.

Selecting a digital projector suited for a multi-touch display seemed to be more
complex than one would imagine. In most cases (budget) office projectors are not
suitable because of their long throwing distance. It is possible to use mirrors to
cut down the projection distance, however this reduces the quality and brightness
of the image and complicates the design of the device. When mirrors are used it is
recommended to use a front surface mirror to prevent a double projection.

We have looked into several (expensive) short throwing distance projectors that
are currently available on the market. Based on the specifications and prices (see
Table 2.1), the 3M DMS 700 seemed to be the best choice. The 3M DMS 700 is
capable of projecting a screen size with a diagonal of 102 cm from a distance of 50
cm.
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Projector type Native resolution MSRP
3M DMS 700 1024x768 $ 2765
JVC DLA-SX21SU 1400x1050 $ 11995
NEC WT610 1024x768 $ 3999
Sanyo PLC-XL50 1024x768 $ 2900
Toshiba TDP-ET20U 854x768 $ 999
Toshiba TDP-EW25 1280x800 $ 1899

Table 2.1: Overview short-throw digital projectors. Including manufacturer’s sug-
gested retail price (MSRP).

2.5 Choosing a technique

Based on the experiences of building different multi-touch panels, an overview is is
presented in Table 2.2

Comparison overview
Item FTIR RI FI
Component costs High Medium Low
Construction complexity High Medium Low
Closed box required No Yes No
Blob contrast Strong Average Average
Software tracking complexity Low Medium Medium
Reliable finger tracking High High Low
Allows object tracking (pencil) Yes No No
Allows object tracking with fiducials No Yes No
Influence of ambient light Low High High

Table 2.2: A comparison of various aspects in the construction of three different multi-
touch panels: Frustrated Total Internal Reflection (FTIR), Rear side Illumination
(RI) and Front side Illumination (FI).

Due to the requirements set by us and NEMO, it was decided to build a large
table using RI.

2.6 Hardware description

The host computer consists out of two hyperthreaded Intel Xeon processors running
at 3.0 GHz. The computer contains 4.0 GB of memory and uses Windows XP as
operating system.

The multi-touch table (see Figure 2.7) uses a FireWire based camera (Unibrain
Fire-i Colour) using a F2.5 mm micro lens. The projection on the multi-touch table
is created by the 3M DMS 700 digital projector which uses its native resolution
(1024×768 pixels). The dimensions of the table are: 120 cm × 90 cm × 80 cm
(L×W×H) (see Figure 2.8). The actual projection surface is 94.7×72.5 cm (L×W).
The diffuser (polyester) is glued onto a sheet of acrylic. In order to illuminate the
diffuser, five disc shaped infrared illuminators are used. Each disc contains 20 Osram
SFH485P LEDs. The total cost of the system is presented in Table 2.3.
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Component Price
Acrylic sheet (120×90×1 cm) 200
Diffuser material 20
Aluminum profile 150
Construction wooden box 500
Digital projector 1500
FireWire Camera with lens and IR bandpass filter 250
IR LEDs 50
Computer 1000
Total hardware costs 3670

Table 2.3: Overview component costs in euros.

(a) Using the multi-touch table (b) Inside the multi-touch table

Figure 2.7: The left image shows the multi-table used by the author of this thesis. The
right side shows the main components that are placed inside the multi-touch table.
This includes five circular shaped infrared illuminators, a camera with band-pass filter
and the digital projector.

Camera
IR illuminator

8 cm

80 cm Projector
Projected surface

Diffuser material

Side view Top view

35 cm

8 cm

48 cm 32 cm 40 cm

12.65 cm 94.7 cm

8.75 cm

72.5 cm

8.75 cm

12.65 cm

Figure 2.8: Schematic view of the constructed multi-touch table.
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CHAPTER 3

Multi-touch detection and processing

To perform camera based multi-touch detection and processing several frameworks
are available. In this chapter we describe the used multi-touch framework, how a
multi-touch framework connects to a multi-touch application and the different type
of gestures.

3.1 Touchlib

Our multi-touch system uses Touchlib [38] which is a free open source cross platform
multi-touch framework which provides video processing and blob tracking for multi-
touch devices based on FTIR and DI. Video processing in Touchlib is done through
the Intel’s OpenCV graphics library [16]. Touchlib currently runs on MS Windows,
Linux and Mac OS X.

3.1.1 Video image processing

Frustrated Total Internal Reflection

In the case of FTIR, the video processing chain can be very short. Depending on how
much environment ‘noise’ is present only three filters are required. Depending on the
camera, Touchlib provides several options to capture frames. For a cross platform
solution it is possible to use OpenCV. Under MS Windows it is recommended to
use DSVideoLib [28] (USB and Firewire) or the CMU capture driver [36] (FireWire
only) instead. The last two capture filters provide advanced options to set camera
modes. Depending the supported camera modes, it is recommended to set it to 8-bit
mono, the format that Touchlib filters internally use. An overview of Touchlib filters
is available in Appendix B.

When Touchlib is used for the first time (in an application) it stores a copy of the
current frame into the memory. This frame is used as a reference frame and used to
perform background subtraction on the next frames. The last filter called the rectify
filter is used to filter out noise and reduce the gray scale image to a black and white
image only displaying the actually touched areas. An example of the Touchlib image
processing results can be found in Figure 3.1.

(a) Capture filter (b) Background filter (c) Rectify filter

Figure 3.1: Example of the Touchlib filter chain using FTIR.
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Diffused Illumination

Diffused illumination requires more video processing filters before blob tracking can
be applied. First a capture filter is selected depending on the used interface (USB
or Firewire). If the system uses FI it is required to add an invert filter because
Touchlib expects white colored blobs. The next filter is the background subtraction
filter. After removing the (static) background a highpass filter is applied. This filter
compares the contrast in the image and only allows ‘high’ values to pass through
(depending on a pre-set value). As a result only the touched spots will be visible.
Depending on the used diffuser and infrared LEDs the result might show weak blobs,
in this case we can add a scaler filter to amplify the brightness of the blobs. Finally,
the rectify filter is applied resulting in clear blobs ready for tracking. An example of
the Touchlib image processing results can be found in Figure 3.2.

(a) Capture filter (b) Background filter (c) Highpass filter

(d) Scaler filter (e) Rectify filter

Figure 3.2: Example of the Touchlib filter chain using RI.

3.1.2 Lens correction

Our current system is using a wide-angle lens which suffers from a radial distortion.
Because Touchlib tries to correct a non-linear radial distortion with a linear method
based on grid points, it will fail near the corners of the screen. This is the result of
the increasing distortion when a point is further away from the image center.

Fortunately multiple algorithms are available to correct a radial distortion caused
by the lens. For our system a new Touchlib filter was developed which applies image
correction on the video stream. The filter uses standard functions from the OpenCV
library [16].

Camera parameters

Before it is possible to correct an image frame it is required to obtain more infor-
mation about the camera parameters. The camera parameters describe the camera
configuration and consists out of two parts, namely the intrinsic and extrinsic camera
parameters.

The intrinsic parameters describe the properties of the camera which include the
focal length, the image center (principle point, the effective pixel size and the radial
distortion coefficient of the lens. The extrinsic parameters describe the relationship
between the camera and the world. These include the rotation matrix and translation
vector.
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When using a pinhole camera the relationship between a 3D point M and its
image projection m is described as follows:

m = A[Rt]M. (3.1)

In this equation, A represents the camera intrinsic matrix:

A =

fx 0 cx
0 fy cy
0 0 1

 (3.2)

cx, cy are the coordinates of the principle point and fx, fy are the focal lengths on
the x and y axis.

The parameters R and t are the extrinsic parameters. R is the rotation matrix
and t is a translation vector.

Depending on the quality and size of the used camera lens, lenses often contain a
lens distortion which can be characterized by four coefficients (distortion coefficients):
k1, k2, p1 and p2. The first two coefficients describe the radial distortion the last two
describe the tangential distortion.

Pattern

In order to find the camera parameters it is required to calibrate the camera by
presenting it a known pattern from different angles and positions. In our case we used
a chessboard pattern which is obtained from the OpenCV examples. The pattern is
printed on an A4-sized paper and glued onto a steady surface.

Figure 3.3: Camera image of the chessboard pattern with intersection detected by
OpenCV.

By presenting the pattern (Figure 3.3) to the camera to the OpenCV calibration
tool, it will recognize the pattern and assign coordinates to the intersections of the
chessboard pattern. By showing multiple views of the pattern from different angles,
the tool tries to map all the coordinates in a three dimensional space. From the
mapping of these points, the tool is capable of calculating the intrinsic parameters
and the distortions coefficients.

Correcting lens distortion

Since the required parameters are known, we can now apply the image correction.
According to the OpenCV manual the following is defined:

x′ = x+ x
[
k1r

2 + k2r
4
]

+
[
2p1xy + p2(r2 + 2x2)

]
,

y′ = y + y
[
k1r

2 + k2r
4
]

+
[
2p1xy + p2(r2 + 2y2)

]
,

where:
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• r2 = x2 + y2,

• x′ and y′ are the real (distorted) coordinates in the camera image,

• x and y are the ideal (distortion-free) coordinates in the camera image,

• k1 and k2 are the radial distortion coefficients,

• p1 and p2 are the tangential distortion coefficients.

In this equation the second parts adds the radial distortion and the third part adds
the tangential distortion.

However, this equation is not complete. The center of the radial distortion is equal
to the principle point. Therefore it is required to adjust the equation as follows:

u′ = u+ (u− cx)
[
k1r

2 + k2r
4 + 2p1y + p2

(
r2

x
+ 2x

)]
, (3.3)

v′ = v + (v − cy)
[
k1r

2 + k2r
4 + 2p2x+ p1

(
r2

y
+ 2y

)]
, (3.4)

where:

• u′ and v′ are real observed (distorted) image coordinates in an ideal projection,

• u and v are true pixel image coordinates in an ideal projection,

• cx, cy are the coordinates of the principle point,

• k1 and k2 are the radial distortion coefficients,

• p1 and p2 are the tangential distortion coefficients.

We use the relation from Equation 3.3 and Equation 3.4 to undistort the image from
the camera.

In our custom Touchlib barrel distortion correction filter (Figure 3.4) the func-
tion cvInitUndistortMap is called with the intrinsic and distortion parameters. This
function will create a mapping which is used to translate coordinates from a distorted
image to coordinates of the corrected image. These conversion values are stored and
only created on initialization. Each captured frame is corrected using the function
cvRemap with the previous generated conversion mapping. The filter is placed before
the last image filter. The resulting image processing pipeline for RI will now look
like:

1. Capture filter,

2. Background filter,

3. Highpass filter,

4. Scaler filter,

5. Barrel distortion correction filter,

6. Rectify filter.

3.1.3 Blob detection and tracking

In Touchlib the blob tracker handles the blob detection and tracking. Blob detection
is done to detect touch in a camera image. In order to follow the movement of touch,
the blob tracker compares the detected touch locations in a frame with the positions
of the previous frame.
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(a) Distorted frame (b) Undistorted frame

Figure 3.4: Example of lens distortion correction. On the left the original camera
frame, on the right the corrected frame. As result of the image correction, parts of
the original frame are lost.

Blob detection

In each time step, Touchlib requests a frame from the video camera. After a frame
has been processed, the resulting image is used to perform blob tracking. By using
the OpenCV function cvFindContours() we obtain a list of contours found in the
current frame. All found contours (and their properties) are stored in a contours list.

Each contour is checked on whether it is a fiducial marker or a touch. On each
contour Touchlib tries to fit a polygon which matches the outlines of the contour. If
the fitted polygon is build out of four points it might be a possible fiducial marker.
Next it will check whether the angle of all the corners matches approximately 90
degrees. If the result is true, the contour is considered a fiducial and the position
(center) will be calculated. It will also assign a unique tag identifier based on the
pattern found within the square.

If the polygon is more complex than four points, it is assumed to be a touch.
Touchlib will fit an ellipse on the contour. The properties of the ellipse are used to
determine the position, orientation and the size of a blob. If the size of the blob
fits the minimum and maximum requirements on height and width, the blob will be
added to the blob list.

Blob tracking

In order to track blobs it is required to have at least two data sets that contain blobs
in different states. For our example we first define the two data sets.

The first data set contains the blob list from a previous frame and is defined as
follows:

p1, p2, p3, ..., pn

where n is the number of active blobs in the previous frame.
The second set contains the blobs list of the current frame and is defined as follows:

c1, c2, c3, ..., cm

where m is the number of active blobs in the current frame.
After each frame, the data from set p is replaced by set c. Set c will be filled with

the new blob list.

Example:
We define an example with two states represented in Figure 3.5.
The data set of the previous frame:

p1 : (1, 4), p2 : (3, 1)⇒ n = 2.

The data set of the current frame:

c1 : (3, 4), c2 : (2, 3), c3 : (1, 1)⇒ m = 3.
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(a) Previous frame
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(b) Current frame

Figure 3.5: An example of two frames containing different blob states.

In order to match blobs in the previous and current states it is required to create
a matrix that contains the possible conversion states. The number of possible states
can be calculated using the following equation:

N =
(n+ x)!

(n+ x−m)!x!
, (3.5)

where x = m− n.
In our example x = m−n = 1. According to Equation 3.5 the number of possible

states is:

N =
(2 + 1)!

(2 + 1− 3)!1!
= 3! = 6.

For each possible state an entry is added into the transition matrix (Table 3.1).

state c1 c2 c3

s1 new p1 p2

s2 new p2 p1

s3 p1 p2 new
s4 p1 new p2

s5 p2 p1 new
s6 p2 new p1

Table 3.1: The transition matrix showing all possible transition states.

Touchlib’s blob tracker tries to find a state which contains the lowest distance
value. This value is calculated by comparing the distances between the blobs out of
set p and set c. In our example set c contains more values than set p, which means
that the current frame contains a new blob. When calculating the distance value, the
new blob will be assigned the value of zero. Based on the transition matrix we can
calculate the following distance values:

s1 = 0 +
√

(2− 1)2 + (3− 4)2 +
√

(1− 3)2 + (1− 1)2 =
√

2 +
√

4 ≈ 3.41,

s2 = 0 +
√

(2− 3)2 + (3− 1)2 +
√

(1− 1)2 + (1− 4)2 =
√

5 +
√

9 ≈ 5.24,

s3 =
√

(3− 1)2 + (4− 4)2 +
√

(2− 3)2 + (3− 1)2 + 0 =
√

4 +
√

5 ≈ 4.24,

s4 =
√

(3− 1)2 + (4− 4)2 + 0 +
√

(1− 3)2 + (1− 1)2 =
√

4 +
√

4 ≈ 4.00,

s5 =
√

(3− 3)2 + (4− 1)2 +
√

(2− 1)2 + (3− 4)2 + 0 =
√

9 +
√

2 ≈ 4.41,

s6 =
√

(3− 3)2 + (4− 1)2 + 0 +
√

(1− 1)2 + (1− 4)2 =
√

9 +
√

9 ≈ 6.00.
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From these results Touchlib will choose the row with the lowest distance value. In our
example this is s1 which corresponds to Figure 3.6. It is possible that multiple rows
share the same distance value, in this case Touchlib chooses the first row containing
this value (if this value is considered the lowest distance).

c2

0 1 2 3 4 5
0

1

2

3

4

5

c3

c1

p2

p1

Figure 3.6: Final state blob tracker.

Position correction with barycentric coordinates

When using a camera with a wide angle lens, the camera image suffers from radial
image distortion (barrel distortion). The amount of distortion depends on the size and
focal length of the lens. Fortunately Touchlib provides a basic coordinate correction
system which is capable of correcting light radial distortions. In order to do so,
Touchlib uses the barycentric coordinates system [39, 40].

We consider the example in Figure 3.7. In this figure point P represent a touch
in the triangle ABC. The barycentric coordinates are named as α, γ and β. These
values are normalized so they become the areas of the subtriangles which connect to
P (PAB, PBC and PCA). The relation between the coordinates can be described as:

α+ γ + β = 1.

This relation is used to correct the (distorted) coordinate of point P in Figure 3.7.a
to the (corrected) coordinate in Figure 3.7.b.

b
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Figure 3.7: Correcting image distortion with barycentric coordinates mapping.

Touchlib tries to map a triangle grid on the camera image. An example situation
is presented in Figure 3.8.

During the calibration step the user is required to touch the points in the grid to
set the position. Because the distortion is radial, the grid points will not be aligned
evenly. Instead it follows a radial curve which is visible in Figure 3.9.

Generating events

In the last part of the blob tracking, Touchlib prepares the events to be triggered.
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(a) Calibration grid (b) Camera frame

Figure 3.8: An example of the calibration grid and a camera frame suffering from
barrel distortion.
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Figure 3.9: Calibration grid mapped on camera frame.

First Touchlib walks through the list of currently active blobs. If a blob is new in
the current frame (it did not match with a blob in the previous frame) it will contain
an ID with the value -1. In that case a new ID will be generated and assigned. After
the assignment a “touch event” of the blob will be dispatched.

If a blob in the current frame matches a blob of the previous frame, it will use
the same identifier of the previous frame. Depending on the amount of movement
an update event will be dispatched. If the delta of movement is higher than the set
value of distanceThreshold it means the blob ‘traveled’ over a larger distance than one
would assume to be correct. In this case instead of an update event a “touch event” is
dispatched instead. If the delta of movement from the current and the previous frame
is below the value of minimumDisplacementThreshold, no update event will occur.

After Touchlib processed the list of currently active blobs, it compares the list
with the blob list of the previous frame. If a blob was active in the previous frame
but has not been found in the current frame, the blob is marked for deletion and a
“touch up event” will be dispatched.

3.2 Programming language interfaces

In order to use Touchlib with other languages than C++, several wrappers are avail-
able which allow applications to receive data from Touchlib.

3.2.1 TUIO/OSC protocol

By default Touchlib comes with a wrapper which sends TUIO events over the com-
monly used OpenSound Control (OSC1) protocol. For many modern programming
languages such as C#, Adobe Flash (Actionscript 3), Java, Max/DSP, Processing,
Pure Data, Python and Visual Basic, OSC libraries are available. When using Flash
it is required to convert UDP packages to TCP. This can be done by using a tool
called Flosc which acts as a proxy (Figure 3.10).

When an application uses the OSC protocol, it will only be able to receive events
containing properties of the detected blobs. It is not possible to adjust the settings of
Touchlib from the application. Since OSC uses the UDP network protocol to transfer

1http://www.cnmat.berkeley.edu/OpenSoundControl/
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Flosc

TUIO Simulator

Touchlib

FlashFlosc

OSC (UDP) port 3333 XML (TCP) port 3000

Figure 3.10: Schematic view of sending TUIO events over the OSC protocol. Flosc
converts the UDP packages to TCP packages.

data it makes it possible to create a setup in which a dedicated system provides blob
tracking and transfers the data to another system which provides the visualization.

3.2.2 C# wrapper

When using a C# based multi-touch application is being designed it is recommended
to use the TouchlibCOMwrapper. The TouchlibCOMwrapper provides a clean and
easy to use framework to use Touchlib in C#. Since the TouchlibCOMwrapper com-
municates with Touchlib directly, it is possible to use most functions of Touchlib such
as requesting a status update and recapturing the background (in case the ambient
light situation changed). The wrapper uses the Microsoft Component Object Model
(COM2) API to communicate with Touchlib, therefore it is only usable with MS
Windows based operating systems.

3.3 Gesture based interaction

In comparisons with traditional desktop computing with mouse and keyboard, a
multi-touch device provides additional input methods. Instead of working as a point
and click device it can be improved with gesture based interaction.

3.3.1 Gesture classification

In order to distinguish different gesture the following gesture are defined: direct
gestures and symbolic gestures. We use the same naming convention as used by Oka
et al. [27].

Direct gestures

In the definition of direct gestures we describe gesture patterns that allows a user
to manipulate objects directly. The manipulation can be performed with multiple
pointers. For example, when using a multi-touch system it is very common to use
a pinching like motion in order to change the size of an object. Depending on the
distance between two fingers, the object increases or decreases in size. Examples of
common used direct manipulation gestures are shown in Figure 3.11.

Symbolic gestures

Symbolic gestures are patterns based on the gesture location and trajectory. Patterns
can be made in any shape such as triangles, circles or even text characters. Symbolic
gestures are commonly used in applications to simplify tasks. An example can be
found in modern web browsers that feature mouse gesture recognition. When pressing
a pre-defined button, the mouse gesture recognition mode is enabled. The user can
now draw a gesture on the browser window. After releasing the button, the gesture

2http://www.microsoft.com/com/default.mspx
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(a) Translate (b) Rotate (c) Scale

Figure 3.11: A common used direct manipulation gesture set used for object manip-
ulation.

recognition engine will try to match the gesture pattern and complete the task which
the gesture is bind to (such as switching between pages and tabs).

3.3.2 Gesture recognition models

In order to perform gesture recognition, different recognition models are available. We
discuss the most common used models. Based on the advantages and disadvantages
we select a technique that will be used for Gesturelib.

Neural networks

Neural networks are commonly used for pattern recognition [3]. A basic feed forward
neural network (FFNW) consists out of three layers. The input layer, the hidden
layer and the output layer.

Before it is possible to use a FFNW for gesture recognition, it is required to define
a data format which will be fed to the FFNW. For symbolic gestures path information
is stored as a list of x and y values. Depending on the precision of the system, the
path list can increase in size rapidly. To reduce the complexity, the number of entries
is reduced (for example 16 entries in total). The entries in the path list will now
represent a rough estimation of the original path. For each point in the path the
angle is calculated.

The input layer of a FFNW contains 16 neurons, the same number as points we
reduced our path list to. Each angle value is passed to one neuron of the input layer.
Internally each neuron from the input layer is connected to all of the neurons in the
hidden layer. The number of neurons in this layer does not strictly have to be 16
as well. The neurons of the hidden layer contain a value (weight). Next each of the
neurons in the hidden layer is connected to one of the neurons of the output layer.
The number neurons in the output layer depend on the number of gestures that are
required to be recognized.

When a gesture is performed a list of angles is passed to the FFNW. The value
of the input layer is now multiplied with the value of the hidden layer. The result is
passed to the output layer. Since each gesture results in a unique value in the output
layer, it is possible to recognize patterns.

The downside of using FFNW is that the system needs to be trained. On initial-
ization the weights in the hidden layer are filled with randomly chosen values. When
training the FFNW with gesture pattern the weight values in the hidden layer are
adjusted. The training is completed when each pattern only triggers one neuron in
the output layer.

Region based

A popular gesture recognition program for the X Window System is Xstroke [46].
Xstroke is a full-screen gesture recognition program which allows users to bind com-
mands to a gesture.
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The technique which Xstroke uses to recognize gestures is region based. Internally
Xstroke holds a 3 × 3 grid which is numbered from 1 to 9. The grid is centered on
the gesture and will scale to the extends of the obtained gesture path. For example,
if the user draws an N shaped gesture, the line will pass the following regions: 7, 4, 1,
5, 9, 6, 3. Xstroke stores the values of the passed grid cells in a string. By comparing
the result by regular expressions with the gestures in the database, gestures can be
detected.

Direction based

The last gesture recognition technique that will be discussed is based on direction
[2]. When drawing a gesture, the path can be described as a sequence of directions.
In our example we limit the number of possible direction to eight. Each direction is
numbered from 0 up to 7 (counted in clockwise order, the first direction is pointing
to the right and equal to zero). When drawing a gesture shaped as an N, the ideal
direction sequence would be “616” which is equal to up, downright, up. Depending
on the accuracy of the input device and user, the recorded sequence might match or
not. In order to compare both sequences the Levenshtein [21] cost method is used.
The Levenshtein cost method compares the recorded sequence with the list of known
sequences from the gesture library. For each entry in the gesture library a Levenshtein
distance value will be calculated which is based on how similar both strings are. The
match with the lowest Levenshtein cost will be selected as the preferred match. By
specifying a maximum cost value it is possible to discard wrong matches.

3.3.3 Gesturelib

Gesturelib is a gesture recognition library that uses the direction based recognition
technique. We chose the direction based method because it is easy to implement
and the technique does not require training. To add Gesturelib to a Touchlib based
application it is required to add additional hooks to the ITouchListener class. These
hooks pass touch data to Gesturelib. An example can be found in Listing 3.1.

1 class ExampleApp : public ITouchListener

2 {

3 public:

4 ExampleApp ()

5 {

6 glib.Init("mtgesture.xml");

7 }

8

9 ~ExampleApp ();

10

11 virtual void fingerDown(TouchData data) {

12 touch_list[data.ID] = data; // Store touch data
13 glib.TouchDown (&data.ID, &data.X, &data.Y);

14 }

15

16 virtual void fingerUpdate(TouchData data) {

17 touch_list[data.ID] = data; // Update touch data
18 glib.TouchUpdate (&data.ID, &data.X, &data.Y);

19 }

20

21 virtual void fingerUp(TouchData data) {

22 touch_list.erase(data.ID); // Remove touch data
23 glib.TouchUp (&data.ID, &data.X, &data.Y);

24 }

25

26 std::map <int , TouchData > touch_list;

27 gesturelib glib;

28 }

Listing 3.1: Adding Gesturelib hooks to the ITouchListener object.

On initialization Gesturelib reads the file mtgesture.xml. This file contains settings
such as screen dimensions and tolerance settings for Gesturelib. By default it requires
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a minimum gesture size (path) of sixteen points. The file also contains a list of known
gesture patterns. Each gesture entry contains an identifier for the recognized gesture
and the string based on the path direction.

When a gesture is being created, Gesturelib will keep recording the path until
glib.TouchUp is called. When this function is called, Gesturelib will start processing
the path. If enough path data is available, it will start calculating the path directions
and compare the result with the gesture pattern database. The result is returned to
the main application. The application now decides how to process this result.

An overview of the event data pipeline is shown in Figure 3.12.

Touchlib

Event data

Gesture recognition

Blob tracker

Touch down event

Touch update event

Touch up event

Application

Gesturelib

Scene
(rotate, scale, translate)

Event data (unmodified)

Direct object manipulation

Gesture event data

Multi-touch application

Figure 3.12: Schematic view of the events pipeline using Touchlib and Gesturelib in
an application.
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CHAPTER 4

Multi-touch applications

Multi-touch technology allows users to interact with a computer in a new way. When
using a multi-touch device, the type of interaction methods depend on the applica-
tion. Current operating systems do not support multi-touch natively. Therefore it is
required to implement multi-touch callbacks in the application code manually. This
chapter describes how multi-touch applications are created and how existing (single
touch) applications can be improved with multi-touch.

4.1 Software architecture

Depending on the used software language, different methods are used to implement
a multi-touch capable application. Figure 4.1 presents the software architecture of
C++, C# and Flash based applications. In order to use multi-touch in a C# ap-
plication, the touchlibCOMwrapper is used which provides a two way interface with
Touchlib. When using Flash, it is only possible to receive blob positions from Flosc.
It is not possible to control Touchlib from the Flash application or Flosc.

USB driver CMU driver

IEEE 1394USB
CameraCamera

OpenCV library

Touchlib

C++ Application

Flosc

Flash
Application

Gesturelib

C# Application

COM wrapper

Figure 4.1: A block diagram presenting the software architecture of C++, C# and
Flash based applications.

4.2 Multi-touch example

To demonstrate the structure of a multi-touch application we start out with a basic
C++ framework of a graphical single touch application (Listing 4.1).

1 int main()

2 {

3 // . . . Setup scene and i n i t i a l o b j e c t p o s i t i o n s . . .
4 do {

5 get_keyboard_mouse_input ();

6 set_object_positions ();

7 display_scene ();
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8 } while( running );

9 }

Listing 4.1: An example of a single touch application.

This example contains a basic application framework with a program loop. The
program loop includes a function which requests the state of the input devices, a
function which sets the object positions and a function which displays the objects on
the screen.

Since we want to be able to manipulate the object with multi-touch we add multi-
touch support by using the Touchlib framework. We add two objects to the example
applications namely, ITouchScreen and ITouchListener. The ITouchScreen object
handles the image processing and blob tracking. The ITouchListener object han-
dles the events from ITouchScreen. This object contains three mandatory functions
(fingerDown, fingerUpdate and fingerUp), an example is given in Listing 4.2. If it is
required to access the touch information from functions that are not in this class, we
use a variable such as touch list that keeps track of the currently active blobs. More
information about the TouchData structure can be found in Appendix B.5.

1 class ExampleApp : public ITouchListener

2 {

3 public:

4 ExampleApp ();

5 ~ExampleApp ();

6

7 virtual void fingerDown(TouchData data) {

8 touch_list[data.ID] = data; // Store touch data
9 }

10

11 virtual void fingerUpdate(TouchData data) {

12 touch_list[data.ID] = data; // Update touch data
13 }

14

15 virtual void fingerUp(TouchData data) {

16 touch_list.erase(data.ID); // Remove touch data
17 }

18

19 std::map <int , TouchData > touch_list;

20 }

Listing 4.2: Implementing the ITouchListener object.

Next the ITouchScreen needs to be initialized. If available it will read the camera
settings and the filter pipeline from a configuration file. If the configuration file is not
available it will use a default setting. In order to connect the ITouchScreen with the
application we register the ITouchListener to the ITouchScreen object. Each time
an update is requested by the application (with getEvents) the ITouchScreen object
will call ITouchListener with event updates. After completing initialization we can
start the image processing pipeline and the blob tracker.

In the program loop we add getEvents which request updates from Touchlib.
Depending on the required interaction methods object positions can be modified
according to the position of blobs stored in the touch list. If it is desired to manipulate
objects by direct manipulation, this can be done by checking the number of blobs that
are active on an object. By storing the blob data and identity we can compare the
position of the current with the previous state. Depending on the change of position
and distance the object can be manipulated.

The final result of the example application is in Listing 4.3.

1 int main()

2 {

3 // . . . Setup scene and i n i t i a l o b j e c t p o s i t i o n s . . .
4 ITouchScreen *screen; // ITouchScreen ob j e c t
5 ExampleApp myapp; // ITouchLi s t ener ob j e c t
6

7 // Setup Touchl ib
8 load_configfile ();
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9 register_itouchlistener ();

10 start_image_processing ();

11 start_blob_tracker ();

12

13 do {

14 get_keyboard_mouse_input ();

15 screen ->getEvents ();

16 set_object_positions ();

17 display_scene ();

18 } while( running );

19 }

Listing 4.3: The example application including additions to process multi-touch
events.

4.3 Multi-touch demo applications

4.3.1 tDesk

Inspired by the Multi-Point X Server [15] (which is a modification of the X Server
that allows users to use multiple mice and keyboards simultaneously under Linux) we
created tDesk. Currently MS Windows operating systems do not support multi-touch
natively. With tDesk we demonstrate how multi-touch can be used on a MS Windows
based operating system. Due to its design it only allows users to organize and resize
multiple windows by using direct gestures. When tDesk is running in multi-touch
mode, it does not allow the user to use the actual application. In order to use the
application a second mode, mouse mode, is added. The mouse mode is a mouse
simulator which is capable of simulating a mouse with one mouse button (left). This
allows the user to use the multi-touch table as a touch screen.

Figure 4.2: tDesk running in multi-touch input mode.

4.3.2 Real-time Fluid Dynamics Simulation and Manipulation

One of the benefits of multi-touch panels is that it allows direct interaction with the
scene. Based on the fluid solver [32, 33] by Jos Stam a custom version was created
that allows multi-touch input interaction.

By default the application loads a pattern from an image file. The pattern is a
black and white image in portable bitmap (PBM) format. White pixels are considered
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a boundary. Three static sources are placed in the scene by default. The application
contains two interaction modes. In the first mode (simulation mode), touch is con-
sidered as a source and will insert a randomly colored fluid into the simulation. If
the velocity of the source created by touch is high enough, it is possible to frustrate
the static sources.

In the second mode (sandbox mode) it is possible to change the scene by drawing
new boundaries. By drawing boundaries near the static sources, it is possible to see
how fluid flow acts in real-time on these boundaries.

Figure 4.3: Real-time Fluid Dynamics Simulation running in sandbox mode. Two
users are drawing boundaries while the simulation is still active.

4.3.3 NASA World Wind

NASA World Wind (NWW) [6] is a geographical application that allows a user to
explore the world from top down view. Based on the idea that has been demonstrated
by Jeff Han, a custom version of NWW was developed. Unlike Google Earth, NWW
is an open source project which allowed us to add multi-touch interaction technology
into the application. When using NWW as a normal desktop application, controlling
the view depends on mouse interaction (and optional keyboard modifiers). By using
multi-touch we changed the way of interacting with NWW. Instead of performing
mouse simulation we define gestured based interaction using direct manipulation.
We used the TouchlibCOMwrapper to interface with Touchlib.

To keep it simple, two gestures were defined. The first gesture (single touch)
allows the user to move the globe by touching the surface and moving the finger. The
second gesture (two points) allows the user to control the zoom level (by pinching)
and rotation.

Compared to our previous application, this application shows that multi-touch
interaction does not mean that the application becomes multi-user as well. Due to the
limitation of controlling one camera viewport NWW stays a single user application,
even when using multi-touch technology.

4.3.4 Multi-touch media application

The Multi-touch Media Application (MMA) demonstrates the use of gesture based
interaction in a multi-user environment. Originally designed as a multi-touch test
application, it allows users to watch, sort and share video and photo content. It is
possible to load photos while the application is running by inserting a memory card

30



Multi-touch demo applications

Figure 4.4: Controlling the viewport of NASA World Wind with multi-touch.

in the computer. The application also features a virtual keyboard with a note block
and a Google maps widget.

MMA is created with actionscript 3.0 (Adobe Flash) and runs on any system
supporting the Adobe Integrated Runtime (AIR, a cross-operating system runtime
environment). When Flash is used, it is required to use the TUIO classes provided in
the Touchlib framework (Figure 4.1). These classes are used to receive and translate
the TUIO messages which are sent by OSC.

A benefit of using Flash as a platform to construct multi-touch applications, is
that it is easy to use. Flash CS3 comes with a large set of classes that handle audio
and video manipulations. Listing 4.4 shows the basic structure of a Flash based
application.

1 import whitenoise .*; // TUIO c l a s s e s
2 import flash.display .*;

3

4 public class MMA extends Sprite

5 {

6 public function MMA()

7 {

8 TUIO.init(this , "127.0.0.1", 3000, 1024, 768);

9

10 var MainCanvas = new PhotoCanvas ();

11 this.addChild(MainCanvas );

12

13 var Photo1:Photo = new Photo("image1.jpg");

14 MainCanvas.addChild(Photo1 );

15

16 var myKeyboard:OnScreenKeyboard = new OnScreenKeyboard ();

17 MainCanvas.addChild(myKeyboard );

18 }

19 }

Listing 4.4: Example multi-touch application using actionscript 3.

In the first line we import the TUIO classes, the second line imports the classes
required for Display and Sprite objects. A basic application structure is created as
a class. On line eight we initialize the TUIO class, a reference to this application
class is passed, the ip address of the Flosc service, the port of the Flosc service, the
display width and the display height. Next a main canvas is added to the scene. The
canvas is an object based on the RotatableScalable class. The RotatableScalable class
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is part of Touchlib’s actionscript library and implements direct gestures as described
in Section 3.3.1. In this example we also added a photo object and an on screen
keyboard object (both based on the RotatableScalable class) on the canvas. The
application code is now completed.

During testing of the virtual keyboard we experienced the low input performance.
While virtual keyboard object can be scaled and locked according to the user’s pref-
erences, typing text on the virtual keyboard did not work out well. Unlike normal
keyboards the virtual keyboard does not provide tactile feedback. Since most com-
puter users do not look at the keyboard for each word they type, it is hard to find
out whether a key has been pressed and whether this was the right key. It is possible
to add audio feedback for the key press.

Figure 4.5: Example scene of the Multi-touch Media Application. On the canvas
photo and video objects are present. The virtual keyboard is used to type text in the
yellow box.

4.3.5 Video puzzle application

In order to demonstrate how multi-touch can be used in collaborative problem solving
we developed a digital version of the classic jigsaw puzzle. Like normal jigsaw puzzles
the game allows multiple people to solve the puzzle collaboratively. What makes this
puzzle game different is the fact that we use a video instead of a picture. During the
game the video keeps playing on each of the tiles. This increases the difficulty of the
game but also makes the game more amusing.
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Figure 4.6: Two users trying to solve a puzzle in the video puzzle application.
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CHAPTER 5

Multi-touch task performance measurements

With the introduction of multi-touch display devices a new way of human-computer
interaction has been introduced. This chapter focuses on comparing input devices
on different types of tasks and on whether collaborative work on a multi-touch can
improve the performance of a task. One of the most important questions that arise
with new input devices is whether they are capable of simplifying common tasks that
users perform on computers, and in which level they are capable of replacing existing
input device technologies.

Before designing the experiments we formulate the following hypotheses:

1. The performance of a task on a multi-touch device depends on the performance
of the used hardware.

2. Some tasks can be performed faster on a multi-touch device than a mouse.

3. Collaboration on a multi-touch device allows users to complete a task faster
than completing a task alone.

In order to investigate these hypotheses experiments were created. To test the
hardware, multiple benchmark tools were designed. For the performance measure-
ments four different experiments have been designed. The first two experiments focus
on comparing the performance of a mouse device with a multi-touch display device.
The last two experiments compare the impact of collaboration on task performance.

5.1 System latency

In order to measure the influence of hardware on the performance of a multi-touch
device, we measured each part of the system illustrated in Figure 2.1 separately.

5.1.1 Camera

In the first stage of the systems pipeline a camera frame is acquired for processing. It
is possible to calculate the delay according to the Instrumentation & Industrial Digital
Camera (IIDC1) specifications. Each frame is transferred through the FireWire bus.
The time it takes to transfer a frame depends on the format at which the camera
operates. The FireWire bus sends out packages in 125 microsecond time intervals.
The camera operates at 8 bit monochrome with a resolution of 640×480 pixels at 30
frames per second. According to the IIDC specifications this format uses 240 packets
per frame (1280 bytes per packet). The time needed for each frame to be transmitted
to the system is 240 × 125 µsec = 30 milliseconds.

5.1.2 Touchlib

In the next stage of the pipeline the camera image is processed by Touchlib.

1http://damien.douxchamps.net/ieee1394/libdc1394/iidc
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Latency measurement method

In order to measure the latency of Touchlib, timers were added to the Touchlib source
code. Each image filter was measured separately. All tests were done on the same
machine used for the experiments.

Latency results

During the implementation of the timers in the source code a ‘bug’ in Touchlib was
discovered which influence the performance of Touchlib. After each image processing
and blob tracking loop, the loop stalls for 32 ms (Sleep(32)). This means that the
actually processing time of Touchlib is the total Touchlib time from Table 5.1 plus
32 ms resulting in an average of 65 ms.

Filter type No active blobs Five active blobs
CMU capture 3.351 ms 10.49% 3.048 ms 9.63%
Background removal 0.569 ms 1.78% 0.565 ms 1.78%
Simple highpass 4.751 ms 14.87% 4.788 ms 15.12%
Scaler 2.767 ms 8.66% 2.806 ms 8.86%
Barrel distortion correction 19.962 ms 62.49% 19.913 ms 62.90%
Rectify 0.544 ms 1.70% 0.538 ms 1.70%
Total filter time 31.944 ms 100% 31.658 ms 100%
Finding blobs 1.276 ms 99.61% 1.491 ms 94.97%
Tracking blobs 0.004 ms 0.31% 0.061 ms 3.89%
Dispatching events 0.001 ms 0.08% 0.018 ms 1.15%
Total tracker time 1.280 ms 100% 1.570 ms 100%
Total Touchlib time 33.225 ms 33.228 ms

Table 5.1: Touchlib image processing and blob tracker latency results.

5.1.3 Digital projector

In the last stage of the pipeline the resulting image is presented to the user by the
digital projector.

Latency measurement method

Based on the latency measurement tool described in the paper [30] a re-implementation
was created.

The measurement tool allows us to compare the number of frames the digital
projector lags compared to the reference CRT monitor. In order to use the tool
it is required to turn on vertical synchronization in the display settings. For our
measurements we used an Iiyama Vision Master Pro 510 as reference CRT monitor.
When starting the tool it is required to input the native resolution and refresh rate
of the digital projector. The 3M DMS 700 uses a resolution of 1024×768 at 60 Hz.
While the tool is running a large green bar will move position each time a frame is
being refreshed. In our case that means 60 positions per second.

To perform the measurement the display of the CRT is cloned to the native reso-
lution and refresh rate of the projector. Next the projector is aimed at a projection
surface place next to the CRT monitor. To compare the latency it is necessary to
take a photograph that includes the image of the CRT and digital projector in one
frame. In order to take this picture, a digital camera was used with the shutter speed
set to the refresh rate of the screen. The latency in milliseconds can be calculated by
comparing the position of the green bar of both devices (see Figure 5.1).

Latency results

We performed measurements on multiple digital projectors. The resulting images
were compared on the computer. The image from the 3M DMS 700 (Figure 5.1)
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Figure 5.1: Comparing the latency of the digital projector with a CRT monitor using
the latency tool.

showed a delay of six frames. Since the refresh rate was fixed at 60 Hz, the refresh
time of a single frame is equal to 1

60 seconds ≈ 16.667 ms. By multiplying this value
with the number of (delayed) frames we can find the following latency:

1
60
× 6 = 0.1 seconds = 100 milliseconds.

After processing the results of the other digital projectors we found out that only the
3M DMS 700 had such a high latency. After contacting 3M support, they informed
us this was probably due the image improvement chip (Hollywood Quality Video,
HQV). According to 3M it was not possible to turn off this image processing chip.
Results of projectors tested by us are listed in Table 5.2.

Projector type Native resolution Latency Comments
3M DMS 700 1024×768 @ 60 Hz 100 ms short throw
Canon LV-S1E 800×600 @ 60 Hz 16.67 ms or less office projector
Casio XJ-S30 1024×768 @ 60 Hz 16.67 ms or less office projector
Epson EMP-400W 1280×800 @ 60 Hz -16.67 ms short throw
NEC WT610 1024×768 @ 60 Hz 16.67 ms or less short throw
Sanyo PLC-XL50 1024×768 @ 60 Hz 16.67 ms or less short throw
Sharp PG-A10X 1024×768 @ 60 Hz 16.67 ms or less office projector
Toshiba EW25 1280×800 @ 60 Hz 16.67 ms or less short throw

Table 5.2: Digital projector latency results.

Note that the Epson digital projector has a negative latency value. Benchmark
results show that the Epson is almost one frame ahead compared to the CRT monitor.

5.1.4 Total system latency

It is now possible to calculate the total system latency. The results are displayed in
Table 5.3. These test results do not include the application processing time.

Because of the 3M DMS 700 projector and the aforementioned Touchlib bug the
total latency is almost 200 milliseconds.

In order to find out what influence latency has on the test results we selected
a “small group” of test persons which did the test on different hardware. For this
test session a patched version of Touchlib was used. The 3M DMS 700 projector was
replaced by a Sharp PG-A10X projector. Because of the large throwing distance of
the Sharp projector, a mirror was required for projection.
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Used projector 3M DMS 700 3M DMS 700 Sharp PG-A10X
(improved touchlib) (improved touchlib)

FireWire Camera 30 ms 30 ms 30 ms
Touchlib 33 ms 33 ms 33 ms
Touchlib ‘bug’ 32 ms 0 ms 0 ms
Digital projector 100 ms 100 ms 0 ms
Total latency 195 ms 163 ms 65 ms

Table 5.3: Comparing the total system latency of different hardware and software
combinations. Latency time is measured in milliseconds.

5.2 The experiment environment

The multi-touch tests are performed on a multi-touch table based on RI (as described
in Section 2.6). To perform the test with the mouse the same computer was used.
However in this case we used a CRT monitor (22 inch, Iiyama Vision Master Pro
510) and a mouse (Logitech standard mouse with three buttons). All test results are
stored in a MySQL database.

5.2.1 The experiments conditions

To perform the measurements 22 persons were selected to participate. Each person
is required to fill in a small question form which contains the following questions:

• Age

• Gender

• Handedness

• Using glasses?

• Educational background

• Number of years of experience with a mouse device

• Number of years of experience in general desktop computing

• Most used Operating System

Additionally each person was assigned a unique numerical identifier which is re-
quired to run all four experiments. All persons used the same order of doing the
experiments. On completion of all experiments the test subjects are asked to fill out
a small questionnaire (Appendix C).

In order to prevent a bias due to learning effects, the order of the used input devices
for experiment 1 and 2 have been divided over the persons according to Table 5.4.
The test persons were not paid for performing the experiments. The total time to
complete all four experiments is about 25 minutes.

Experiment 1 Experiment 2
Group Device Device Device Device

1 Mouse Multi-touch Mouse Multi-touch
2 Mouse Multi-touch Multi-touch Mouse
3 Multi-touch Mouse Multi-touch Mouse
4 Multi-touch Mouse Mouse Multi-touch

Table 5.4: Four different experiment paths.

The experiments were performed by 22 users, 4 female and 18 male users. Most
participants have a Bachelor or Master degree in Computer Science. Two participants
were left handed and eight of them used glasses. All users have at least 7 years
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of experience in general desktop computing and using the mouse as input device.
Fourteen users preferred MS Windows as operating system, 4 users Linux and 4 users
Apple Mac OS.

5.3 Experiment 1: A 1D and 2D pointing task

5.3.1 Background

In 1954 Paul Fitts [11] of Ohio state University published a model of human movement
which predicts the movement time between a start and target object with a specific
distance. Fitts implemented this experiment by creating a board with adjustable
metal plates. The test subjects were asked to perform a one dimensional tapping
test between the two metal plates by using a stylus (Figure 5.2). The experiments
were performed on different sizes of the metal plates (the width, W ) and different
distances between the two metal plates (the amplitude, A). During the test the
apparatus recorded the time difference between touching the two metal plates. In
order to measure the accuracy, Fitts added two extra plates on both sides of the
metal plates. This way it became possible to register and record a miss.

Figure 5.2: Reciprocal tapping apparatus (image take from [11]).

Fitts formulated the following equation to predict the movement time:

MT = a+ b log2(
2A
W

) (5.1)

where:

• MT is the average time to perform the task (Movement Time),

• a and b are constants which depend on the type of user and the type of input
device,

• A is the distance between the start object and the target object measured from
the center of both objects,

• W is the width of the object in horizontal axis.

The logarithm part in Fitts’ law describes how difficult the task is and is called
the index of difficulty (ID). The unit of the ID is bits, as shown in the following
equation:

ID = log2(
2A
W

).

MT = a+ b× ID (5.2)

By taking a closer look at Equation 5.2 it can be separated in two parts. The
first part contains a constant a that describes the cost of time that is spent to non-
physical movement such as the processing time of recognizing objects. The second
part multiplies the ID with a time unit which is often measured in milliseconds.
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In order to compare the pointing performance of an input device, it is required to
characterize the performance into one value. This value is called the index of perfor-
mance (IP ). Two common methods to calculate this value are visible in Equation 5.4
or Equation 5.3:

IP =
1
b
, (5.3)

IP =
ID

MT
. (5.4)

When using the Equation 5.4, the impact of constant a is ignored. The performed
measurements will use the first equation.

In some occasions equations 5.1 gives a negative rating for a task difficulty. This
occurs when the amplitude is less than half the target width. To solve this issue
MacKenzie [22] proposed the equation known as the Shannon formulation:

MT = a+ b log2(
A

W
+ 1), (5.5)

ID = log2(
A

W
+ 1). (5.6)

By using the Shannon formulation we preserve the characteristics of Fitts’ Law
and are always presented a result with a positive rating.

5.3.2 Task description

For this experiment a Fitts’ law model has been re-created in a modern digital en-
vironment using OpenGL. The application can be controlled using standard input
devices such as a mouse, trackball, table or by using the multi-touch device.

Test A

In this first test two rectangular targets (one blue and one green) are presented to
the test subject. The two rectangles appear on predefined locations (based on the
amplitude) and widths from a data set, in a random order (see Figure 5.3.a). The
test person is instructed to click or touch the green rectangles as fast as possible, but
still keeping in mind that accuracy is more important than speed.

The data set contained 4 different values for width of the rectangle: 20, 30, 40
and 50 pixels, and 5 different amplitudes: 64, 128, 256, 384 and 512 pixels. In total,
the data set contained 20 combinations. The most simple task has an ID of 1.19 bits
(W = 50, A = 64) and the most difficult task has an ID of 4.73 bits (W = 20, A =
512).

Test B

The second test is based on a model developed by MacKenzie that extends the current
one dimensional testing model to two dimensions. The application is controlled in the
same way as Test A, however, instead of rectangular shaped objects, circular objects
are presented (see Figure 5.3.b). The first circle will always appear in the center of the
screen functioning as a reference point. The second circle will appear on predefined
locations using a predefined radius, in a random order. As in our previous test, the
test subject is instructed only to click or touch the green objects.

The data set for Test B uses the same amplitudes and widths as Test A. The
positions are divided in the two dimensional space.

During the test, the application records the time and position of the clicks be-
tween the two objects. When the experiment ends it calculates the ID and IP . To
calculate the constants a and b, linear regression is performed on the data set of the
measurements.

5.3.3 Training

Before performing the test run, all subjects are allowed to try out the test application
on different input devices. During the training session all subjects are informed on
how to use the multi-touch device and how sensitive the surface is.
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(a) Test A (b) Test B

Figure 5.3: The left image shows a one dimensional Fitts’ Law test. The right image
shows a two dimensional Fitts’ Law test.

5.3.4 Results

Before linear regression was used, outliers were removed from the data set. A point
was considered an outlier when the value was more than one standard deviation from
the mean. Detailed results with scatter plots can be found in Appendix D.

Results Test A

Results of Test A are shown in Figure 5.4. By taking a look at the intercept of the
models, it shows that the mouse device has the lowest start cost. When the task
difficulty increases (index of difficulty) the time to complete the task increases more
compared to the multi-touch devices. The multi-touch devices show a higher start
cost. When comparing the devices using the index of performance (Figure 5.5) of the
input devices, the multi-touch devices performs better than the mouse in this task.
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Figure 5.4: Comparison of the time to complete a task, based on the index of difficulty,
on different input devices.
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Figure 5.5: Comparison of the index of performance of four different input devices.

In Table 5.5 we present the results of the input devices including Fitts’ Model, the
index of performance and the linear model fit. The table shows that the measurements
of the mouse device contain a high correlation (r = 0.812). On the multi-touch device,
results show that the measurements using the 3M projector, contain a low correlation.

Input device Model IP r r2

Mouse (Desktop) All users 0.39 + (0.12 * ID) 8.68 0.812 0.659
Multi-touch (3M) All users 0.61 + (0.04 * ID) 28.01 0.435 0.189
Multi-touch (3M) Small group 0.58 + (0.03 * ID) 31.41 0.370 0.137
Multi-touch (Sharp) Small group 0.45 + (0.05 * ID) 18.93 0.689 0.475

Table 5.5: A comparison between different input devices presenting Fitts’ model, the
index of performance (IP) and the model fit.

Results Test B

Compared to Test A, the slope of the input devices in Figure 5.6 shows different
behavior. When increasing the task difficulty, it becomes more difficult to perform
the task on the multi-touch table when the 3M projector is used. The difference
between the slope of the mouse input device and the multi-touch input device using
the Sharp projector is minimal.

By comparing the index of performance in Figure 5.7, it shows that the multi-
touch table using the Sharp projector outperforms the mouse in this set of tasks.

In Table 5.6 we present the results of the input devices including Fitts’ Model, the
index of performance and the linear model fit. The table shows that the measurements
of the mouse device contain a high correlation (r = 0.897). Compared to Test A, Test
B shows higher values for the measurements correlations when using the multi-touch
device.

5.3.5 Discussion

Results from Test A show that the multi-touch devices contain higher start cost than
the mouse device. The reason for this can be related to the fact that it requires
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Figure 5.6: Comparison of the time to complete a task, based on the index of difficulty,
on different input devices.

more physical effort to move a hand to a specified destination than using a mouse
to move a cursor. The index of performance however, is lower when performing two
dimensional tasks. The reason for the large difference between the IP in Test A and
Test B when using the multi-touch table is the fact that the user is required to perform
more physical effort. In Test A the movement of the hands was only restricted in
one dimension. Because Test B contains situations where large and small objects are
placed at the top of the screen, the user is required to reach further. An example can
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Figure 5.7: Comparison of the index of performance of four different input devices.
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Input device Model IP r r2

Mouse (Desktop) All users 0.36 + (0.16 * ID) 6.28 0.897 0.805
Multi-touch (3M) All users 0.36 + (0.21 * ID) 4.83 0.576 0.332
Multi-touch (3M) Small group 0.14 + (0.30 * ID) 3.37 0.621 0.385
Multi-touch (Sharp) Small group 0.40 + (0.13 * ID) 7.66 0.548 0.300

Table 5.6: A comparison between different input devices presenting Fitts’ model, the
index of performance (IP) and the model fit.

be found in Figure D.6, it shows that users have difficulty to select the object in the
task with an ID of 4.73 bits. This corresponds to the task with the object width of
20 pixels (1.85 cm) and an amplitude of 512 pixels (47.35 cm).

5.4 Experiment 2: An object manipulation task

With the introduction of new multi-touch input device often object manipulation
based applications are presented (such as photo manipulation). By using predefined
sets of gestures the user can move, scale and rotate the object. The following ex-
periments focuses on how multi-touch (gestural) input compares to mouse input on
object manipulation.

5.4.1 Task description

Based on object manipulation test described in [12] we created a similar test appli-
cation. In this test the user is required to manipulate a green square shaped object
matching the position, orientation and size of the red square shaped object (Fig-
ure 5.8). At the start of each test run, the user is required to place the mouse pointer
or finger at a home location. After placing the pointer at the home location, a count-
down timer will start. When the timer reaches zero, the scene will display the green
and red objects. The user is instructed to move the green object onto the red object.
When the green object reaches its destination and the user releases press (or touch),
the system compares the position of the red and green object. If the difference is
lower than the tolerance, the object will snap and the test will continue to the next
scene. During the test, the start time, object selection time, the end time and the
number of selection and docking errors are recorded. A selection error occurs when a
user misses the green object. A docking error occurs when a user releases the green
object without matching the tolerance. The data set contains a combination of the
following properties:

• 3 target sizes (100, 125 and 150 pixels),

• 3 target scales (0.5×, 1.0× and 2.0×),

• 3 target angles (90, 180 and 270 degrees),

• 3 target distances (256, 384 and 512 pixels).

We used the following tolerance settings:

• 4 pixels tolerance in x and y direction,

• 2 degrees in angle,

• 0.08× in scale.

The data set:

• Test A: 3 distances × 3 sizes = 9 combinations,

• Test B: 2 scales × 3 distances × 3 sizes = 18 combinations,

• Test C: 3 angles × 3 distances × 3 sizes = 27 combinations,
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• Test D: 2 scales × 3 angles × 3 distances × 3 sizes = 54 combinations,

• Total combinations: 108.

In this data set duplicate entries were removed. Because of the large number of
combination we divided the data set in three equally sized sets. When the experiment
starts, the computer chooses a data set randomly.

Distance

Size

Home location

Figure 5.8: A scene of experiment 2. The home location is placed on the bottom. In
this example the green object has a different rotation and scale than the red object.
The user is required to adjust the green object to fit the red object.

Test A - Translate

In this first test the manipulation of the green object is restricted to translation.
Rotation and scaling are disabled.

Test B - Translate and scale

This test extends the previous test with a different sized destination object. Rotation
is disabled.

Test C - Translate and rotate

This test extends Test A with a differently orientated destination object. Scaling is
disabled.

Test D - Translate, scale and rotate

In the final test of experiment 2 the destination object has a different size and rotation.

5.4.2 Training

Because multi-touch gestures are a new way of interaction for most test subjects, each
will be briefly introduced:

When using the mouse the following controls are available:

• Translation: hold left mouse button + movement on the X-axis/Y-axis,

• Scaling: hold middle mouse button + movement on the Y-axis,

• Rotation: hold right mouse button + movement on the X-axis.

When using the multi-touch table the following gestures are available:
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• Translation: touch the surface + movement on the X-axis/Y-axis,

• Scaling: touch the surface with two fingers, the delta of the distance is used to
zoom in or out,

• Rotation: touch the surface with two fingers and rotate the current position.

Each person is allowed to practice the interaction methods for a few minutes.

5.4.3 Results

Due to a typo when creating the data set, several test entries that should contain the
distance value of 256 pixels were assigned a distance value of 281 pixels. Unfortunately
it was not possible to redo the experiments.

In the experiment results we define the test conditions with a Test ID. The Test
ID is a string such as: 150w-000a-100s-256d-R. This represents the Width (w), the
rotation Angle (a), the Scale (s), the travel Distance (d) and start location (Left
or Right) of the object. The results of Test A are shown in Figure 5.9. The bar
chart displays the average time to complete a specific task. Results show that the
multi-touch devices require more time to complete the tasks of Test A. Results of the
multi-touch device using the 3M projector show that the docking time is about 2 to
3 times slower than when a mouse is used.

In Figure 5.10 a comparison of task difficulty is made based on the different
scales and rotation. For each device we compared the total time to complete the
task (selection and docking). Results of the mouse device show minimal differences
between the time to complete a task containing scaling or rotation. The results of
the multi-touch device using the 3M projector show that more time is required to
complete a task that contains a rotation than a task that contains scaling.

To compare the performance of gesture based interaction on the multi-touch device
with the mouse, the test results have been sorted by task difficulty according to the
completion time when using the mouse device (Figure 5.11 and Figure 5.12).

The number of selection errors on all devices was either zero or near zero. There-
fore no graph is presented for this result. The results of the number of docking errors
is shown in Figure 5.13. In Test A results of the mouse device show a result of zero
or near zero. This means that after object selection, the object is dragged to the
location within the tolerance in one stroke. The multi-touch devices however show
that multiple actions are required in order to dock the object. When comparing
Figure 5.12 with Figure 5.14 difficult mouse tasks show an increasing error rate for
docking.

5.4.4 Discussion

When comparing the results of the input devices of Test A, it is visible that most
time is spent on docking the object. The selection time on each device does not seem
to be influenced by the size and travel distance between the home location and the
object.

Results show that in Test B and Test C, rotation on a multi-touch device requires
more time than scaling. This can be explained by the fact that when scaling is
performed, two points of contact change in distance. When the task contains a
rotation, more physical effort is required. Due to the limitations of the joints in our
arms and hands, motions that require a rotation of 180 degrees are often performed
in multiple steps.

When comparing the total completion time of the task in Test A, results show
that a mouse is more suited for point and dragging tasks. Results of Test B and C
show that when the task difficulty of the mouse increases, gesture based interaction
on the multi-touch device (Sharp) is able to perform the task faster. The result of
Test D show that when the complexity of tasks increases (scaling and rotation), the
multi-touch device (Sharp) outperforms the mouse device on the most time consuming
tasks.

By comparing the results of Test B and C on docking errors, we notice that
more actions were required to complete a task containing rotation than scaling. This
explains why more time was required to complete the task with rotation in Figure 5.10.
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(a) Mouse input device
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(b) Multi-touch input device (3M DMS 700)
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(c) Multi-touch input device (Sharp PG-A10X)

Figure 5.9: A comparison of the time to complete tasks from Test A. The histogram
is divided into the time required to select the object and the time to dock the object.
The x-axis specifies which test is performed using a Test ID. The Test ID consists of:
Width (w), Distance (d) and start location (Left or Right) of the movable object.
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(b) Multi-touch input device (3M DMS 700)
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(c) Multi-touch input device (Sharp PG-A10X)

Figure 5.10: A comparison of task difficulty of Test B (using different scales and
rotation). In this data set objects are 100 pixels wide. Each bar represent a different
value for the travel distance. The y-axis presents the time required to complete the
task, the x-axis specifies which test is performed using a Test ID. The Test ID consists
of the Angle (a) and Scale (s).
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(b) Test B
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Figure 5.11: A comparison of task difficulty sorted by the time it takes to complete
a task with the mouse device. The y-axis specifies the time it is required to complete
the task. The x-axis specifies the Test ID. The Test ID consists of: Width (w), Angle
(a), Scale (s), Distance (d) and start location (Left or Right) of the movable object.
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Multi-touch task performance measurements
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Figure 5.12: A comparison of task difficulty sorted by the time it takes to complete
a task with the mouse device (Test D). The y-axis specifies the time it is required
to complete the task. The x-axis specifies the Test ID. The Test ID consists of:
Width (w), Angle (a), Scale (s), Distance (d) and start location (Left or Right) of
the movable object.
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Experiment 2: An object manipulation task
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(b) Test B
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Figure 5.13: A comparison of the number of docking errors when comparing task
difficult based on translation, scaling and rotation. The y-axis specifies the time it is
required to complete the task. The x-axis specifies the Test ID. The Test ID consists
of: Width (w), Angle (a), Scale (s), Distance (d) and start location (Left or Right)
of the movable object.
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Multi-touch task performance measurements
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Figure 5.14: A comparison of the number of docking errors compared to the task
difficulty sorted by the time it takes to complete a task with the mouse device. The
x-axis specifies the Test ID. The Test ID consists of: Width (w), Angle (a), Scale (s),
Distance (d) and start location (Left or Right) of the movable object.
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Experiment 3: A collaborative sorting task

5.5 Experiment 3: A collaborative sorting task

5.5.1 Introduction

Large interactive tabletop displays allow multiple people to perform tasks collabo-
ratively. Whilst our current hardware does not allow us to distinguish between the
users (unlike the Mitsubishi DiamondTouch) it does allow multiple users to perform
a set of tasks. In our third experiment we focus on collaborative tasks in small groups
which consist of four persons maximum.

5.5.2 Task description

For this experiment a tile based application was created. The task is to sort colored
square shaped objects to their corresponding colored containers (40 objects in total).
The four containers are placed in the middle of the screen. The task is performed with
different numbers of test subjects (one to four). The test subjects are encouraged to
sort quickly, but instructed that the emphasis should be on accuracy. In the test it is
possible to put objects in the wrong container. During the test, the number of test
subjects, the task completion time, parallel activity and the number of mistakes is
recorded.

5.5.3 Training

Before the test, all subjects are introduced to the application and allowed to try the
application together for a few minutes.

5.5.4 Results

The results of the collaborative sorting task are presented in Figure 5.15. The figure
shows that the number of users has a positive influence on the time to complete the
task.

When comparing the results using the 3M projector, the figure shows that two
users are able to complete the task at 71% of the original completion time (small
group). When three users complete the task, the time to complete the task is 49%
of the original time. Completing the task with four users does not seem to improve
performance.

Collaboration on a Sharp projector showed better improvements than on the 3M
projector. We measured that two users are able to complete the task at 42% of the
time when completing the task alone (small group). When completing the task with
three users, minimal improvement is noticeable. By using four users the time to
complete the task is reduced to 27% of the time.

The results in Figure 5.16 show that the number of strokes increases when more
users are active. According to Figure 5.17 and Figure 5.18 increasing the number of
users also increases the number of selection errors and sorting mistakes.

Results of the parallel activity measurements are presented in Figure 5.19.

5.5.5 Discussion

When increasing the number of users, the number of selection errors and strokes
increases. This indicates that the system is either losing track of the user’s input or
users are blocked by movements of other users. Results from Figure 5.19 show that
on average, users are able to move three tiles at the same time.
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Figure 5.15: Average time in seconds to complete the sorting task.
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Figure 5.16: Average number of strokes used to complete the sorting task.
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Experiment 3: A collaborative sorting task
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Figure 5.17: Average number of selection errors when completing the sorting task.
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Figure 5.18: Average number of sorting mistakes when completing the sorting task.
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Multi-touch task performance measurements
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Experiment 4: A collaborative point and selecting task

5.6 Experiment 4: A collaborative point and selecting task

5.6.1 Introduction

Our previous collaborative task focused on dragging objects in a two dimensional
space. Another interesting task is how well users can collaborate in point and select
tasks. In our final experiment we focus on collaborative tasks in small groups which
consist out of four persons maximum.

5.6.2 Task description

Test A - Pointing

For this experiment the screen is filled with different colored objects (50 objects, 5
colors). The task is to touch the objects in the right order. When touched the object
disappears. During the test the order is displayed at the top of the screen. The
experiment ends when all of the requested objects are removed.

Test B - Selecting

This experiment is based on Test A, however instead of pointing at objects we allow
the user(s) to select one or multiple objects at the same time to clear the scene.
Selecting is done by drawing a closed line over the objects (“rubber band” selection).
Again, the experiment ends when objects are removed.

All tests are performed with different group sizes (one up to four). During the test
the number of test subjects, the task completion time and the number of mistakes is
recorded.

5.6.3 Training

Before testing all test subjects are introduced to the application and allowed to try
the application together for a few minutes.

5.6.4 Results pointing task

Results from the collaborative pointing task (Figure 5.20) show an improvement in
time when multiple users are active. Comparing the result when using the 3M projec-
tor shows improvements in completion time reduced to 58% (2 users), 35% (3 users)
and 39% (4 users). When using the Sharp projector the difference between two, three
and four users is less noticeable. The completion time is reduced to 46% (2 users),
41% (3 users) and 39% (4 users). Results are compared to the small group test results.

The number of selection and color errors is increased with the number of users
(Figure 5.21 and Figure 5.22).

5.6.5 Results selection task

Results from the collaborative selection task can be found in Figure 5.23. When
completing the task on with the 3M projector the completion time is reduced to 48%
(2 users), 37% (3 users), 37% (4 users). The improvements on the Sharp projector
are: 42% (2 users), 39% (3 users) and 33% (4 users). The difference between three
and four active users is minimal.

According to Figure 5.24 and Figure 5.25 selection errors and color mistakes are
higher when more users are active.

5.6.6 Discussion

In the pointing task we noticed from observation that when more users are active
on the table, they are more likely to block others when selecting objects, this has a
negative impact on the time to complete the task.

The test results of the selection task show minor improvements between three and
four active users. The reason for this can be found in the design of the experiment.
Since users are required to select objects in the right order by dragging a closed line
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Multi-touch task performance measurements
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Figure 5.20: Average time to complete the pointing task.
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Figure 5.21: Average number of selection errors when completing the pointing task.

over the objects, it is more likely that users need to wait before they can proceed to
the next object color.

Compared to the pointing task, the selection task has a higher selection error
rate. From observation we noticed that the corners of the table are less responsive to
touch. Therefore, it often requires multiple trials to clear objects near the corners of
the table resulting in a high number of selection errors.
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Experiment 4: A collaborative point and selecting task
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Figure 5.22: Average number of color mistakes when completing the pointing task.
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Figure 5.23: Average time to complete the selection task.
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Multi-touch task performance measurements
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Figure 5.24: Average number of selection errors when completing the selection task.
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Figure 5.25: Average number of color mistakes when completing the selection task.
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CHAPTER 6

Discussion

We evaluated the multi-touch device through a set of experiments. In this chapter
we discuss the results based on the hypotheses we set in the previous chapter.

6.1 The performance of a task on a multi-touch device
depends on the used hardware

From the experiment results it becomes evident that system performance has a high
impact. Due to the latency of our multi-touch system using the 3M projector (and the
Touchlib ‘bug’), results show longer task completion times (compared to the Sharp
projector). Based on the questionnaire (see Appendix C) most users (40%) rated the
responsiveness of the system as fair.

Limited to the used camera and table size, our multi-touch table has a precision of
947mm
640pixel = 1.48mm/pixel. The influence of the precision becomes visible when users
are required to dock objects within a tolerance. While pointing objects is no issue on
a multi-touch table, the time spent to correct the position of an object is. As a result
of the system latency, movement is not directly visible. Therefore users are required
to anticipate on the result of movement. In these case the performance of completing
a task is reduced because of users waiting to view the result. Another problem related
to the precision is the sensitivity of the multi-touch table to touch. When using RI,
fingertips are tracked based on contrast differences and contours. However, when a
finger is near the surface but not on the surface, the fingertip still reflects IR light
to the camera. While this problem can be solved partially by adjusting the image
threshold in Touchlib, it will also reduce the sensitivity to touch (in this case a touch
requires more pressure to increase the size of the contact and reflect enough infrared
light).

Results of the questionnaire show that the ergonomics of the table should be
improved. Due to the design of the table, it is not possible to place your feet under
the table. This increases the distance with the touch sensitive area of the multi-touch
screen. Another problem is the size of the table. Tall users complain about having
back stains as result of hanging over the table while short users are having trouble to
reach objects at the top of the screen. The most important problem users mentioned
is the high friction with the multi-touch surface. The surface which is made of acrylic
makes it difficult to perform smooth motions over long distances. After completing
all experiments users mentioned painful fingertips.

6.2 The comparison between input devices on task
performance

When comparing the performance of a task in one dimension with the mouse device,
the break even point of Test A is positioned at an ID of 0.8 bits (when using the
Sharp projector), and an ID of 2.72 bits (when using the 3M projector). From our
data set, the closes entry to the ID of 2.72 bits is the ID of 2.61 bits. This corresponds
to a task with an object width of 50 pixels (4.62 cm) and an amplitude of 256 pixels
(23.68 cm).
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In the results of the IP of the same test, the IP of the multi-touch device (using
the 3M projector) contains a very high bandwidth value. The reason for this behavior
is related to the design of the task. Originally the Fitts’ Law test was designed to
measure the performance of single-input user devices. On a desktop, an indirect
device (the mouse) is used to move a cursor to its destination. In order to reach
each destination, it is required to move the cursor from its original position to a new
position. On the multi-touch table no cursor was present. Users were allowed to use
both hands in order to select the objects. Because no cursor is present, users often
used the hand which was the closest to the object. Depending on the positioning of
the hand, the required travel distance was minimal resulting in low touch times.

Results of Test B of the first experiment show different behavior compared to
Test A. By changing the experiment to a two dimensional one, the break even point
is positioned at an ID of 1.6 bits (when using the Sharp projector) and 2.48 bits
(when using the 3M projector). A task of 1.6 bits corresponds with an object width
of 30 pixels (2.77 cm) and an amplitude of 64 pixels (5.92 cm).

Results of the IP of Test B show that the mouse device outperforms the multi-
touch device using the 3M projector. Only the multi-touch device using the Sharp
projector is capable of completing these tasks faster. The reason for the lower per-
formance can be found in the way users interact with the devices. On the desktop,
it does not require much effort to select objects which are placed near the top of the
screen. On a multi-touch table, it requires more physical effort to select small objects
near the top of the screen. From the results of the questionnaire, 75% of the test
users preferred to complete this set of tasks on the multi-touch device.

In tasks which contain object manipulation, gesture based interaction helps to
reduce the time to complete this task. Complex tasks (Figure 5.12) containing objects
in a different rotation and scaling requires multiple actions (Figure 5.14) with the
mouse device to complete. When performing the same set of (difficult) tasks the
total completion time and the number of actions is reduced in most tasks (Using the
multi-touch device with the Sharp projector). Results from the questionnaire show
that 50% of the users preferred to complete this set of task on the desktop and the
other 50% the multi-touch device.

Based on these results, we can confirm that tasks which require precision are
faster performed with a mouse device and complex mouse tasks can be performed
faster when using the the multi-touch device.

6.3 The impact of collaboration on a multi-touch device on
task performance

Results from experiment 3 and 4 confirm our hypotheses. Experiment three showed
that when more users are sorting collaboratively the task completion time is reduced.
When using the system with the Sharp projector, four users were able to reduce the
tasks time to 27% of the original time. Although the task completion time decrease,
users tend to be less precise. According to the results, users are more likely to make
sorting mistakes. Collaboration on a multi-touch also points out that working on
a small surface can be troublesome. From observation we noticed that users tend
to sort objects that are in reaching distance first. When a user moves a tile to the
container, the area around the container is blocked by the hand for a short period of
time causing other users to stall. This problem increases, when more users are active
or when users are moving multiple tiles at the same time.

In the pointing task of experiment 4, the task completion time is reduced when
the number of users is increased. From observation we noticed that when four users
are completing the task, it often occurs that users are trying to reach for the same
object. As a results the number of selection errors is increased. In the selection task a
similar effects compared to the pointing task is visible. Increasing the number of users
reduces the task completion time. From the questionnaire 40% of the users rated the
task difficulty as rather difficult. Selecting objects on the surface was difficult due to
the high friction of the acrylic. Another problem was the sensitivity of touch at the
corners of the multi-touch screen that required more pressure to take effect.
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CHAPTER 7

Conclusion and Future work

With the construction of our own camera based multi-touch table we have demon-
strated that multi-touch technology has become affordable. The precision, reliability
and responsiveness of a multi-touch table depends on the used hardware. Because of
the use of a camera based multi-touch technology, ambient light has a large influence
in the tracking performance.

In our set of demo applications we have demonstrated the power of multi-touch
devices. Compared to desktop applications, users were able to manipulate objects in
a natural way by touch. Applications such as the real-time fluid dynamics simulations
demonstrated that scientific applications can benefit from multi-user input. NASA
WorldWind is a demonstration of how existing applications can benefit from multi-
touch input using gesture based interaction.

We have evaluated the performance of our multi-touch table through a set of
experiments. Results show that our current hardware using the a high latency pro-
jector influenced our test results. While multi-touch is capable of performing some
task faster than the mouse device, it should not be considered as a replacement.
When tasks require precision, the multi-touch device shows longer task completion
times with higher error rates. Multi-touch device however, encourage collaboration.
Our test results show significant improvement when the number of users is increased.

Future work

Although we have presented a complete multi-touch solution, there is still room for
improvement on hardware and software level. A few suggestions:

• Latency results show a large performance hit when correcting the camera image
from barrel distortion. Instead of correcting the entire camera image, it is also
possible to apply position correction on the output of the blob tracker.

• Currently image processing is done on the CPU. In order to reduce the load
on the CPU it is possible to use graphics processing units (GPU) for image
processing. A port of Intel’s OpenCV library that uses the GPU has recently
been made available (GPUCV [10])

• The current blob tracker used in Touchlib is not scalable. Depending on the
used hardware, Touchlib will fail to track fifty or more blobs in real-time. A
smarter algorithm would not only take the distance into account but also the
region and direction of a blob. It would also be interesting to use the GPU for
blob tracking.

• Based on our own experiences and feedback of our test users, the touch surface
should be improved. The friction with the acrylic makes it hard to use the
system for a longer period of time. Tests with hardened glass showed promising
results.

• Currently alphanumeric input on a virtual keyboard is a difficult task due the
lack of tactile feedback and the low responsiveness of the system. The respon-
siveness can be improved by using a camera that captures more than 30 frames
per second.
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APPENDIX A

Diffuser materials

Based on published papers on camera based multi-touch devices, most of the used
materials are known. However most papers do not describe the type or brand of
material used for the diffuser. Therefore it was required to try out our own materials.
Based on reports [38] that tracing paper would work we tried it out on our FTIR
prototype with success. However when using the same material on the table which
used RI the diffuser material proved not to perform well enough. Normal tracing
paper absorbs too much infrared light causing glare. Early prototypes of MS Surface
(which is based on RI) stated to use ‘architect vellum’ as a diffuser. Unfortunately
the material was not available at the local paper shops. Therefore we needed to
find an alternative. By comparing the candidate material’s on opacity, strength and
thickness a selection of five paper-like materials was made. Each of these materials
was tested with FTIR and RI under the same testing conditions.

A.1 Tested diffuser materials

• Calqueer 90 g/m3

• Cromatico extra white

• Polyester film 2x matte

• Tracing paper

• Translucent pearl

A.2 Testing conditions

• All measurements were done on a display size of 40×30 cm.

• All diffuser materials have the dimensions of A3 (297×420 mm).

• When using RI one infrared illuminator was used containing 20 infrared LEDs
(Osram SFH485P)

• The distance between the infrared illuminator and the screen was 40 cm.

• The infrared illuminator was placed under the camera.

• To prevent glare the illuminator was placed under an angle of 45 degrees.

65



Diffuser materials

A.3 Materials comparison results

(a) FTIR empty (b) FTIR touched (c) RI touched

Figure A.1: Camera test results using Calqueer 90 g/m3.

(a) FTIR empty (b) FTIR touched (c) RI touched

Figure A.2: Camera test results using Cromatico extra white.

(a) FTIR empty (b) FTIR touched (c) RI touched

Figure A.3: Camera test results using Polyester film 2x matte.
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Materials comparison results

(a) FTIR empty (b) FTIR touched (c) RI touched

Figure A.4: Camera test results using Tracing paper.

(a) FTIR empty (b) FTIR touched (c) RI touched

Figure A.5: Camera test results using Translucent pearl.
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APPENDIX B

Touchlib Reference

Currently no official Touchlib documentation is available. Only a few configuration
examples are available in the SVN tree. This appendix provides general information
about configuring and using Touchlib.

B.1 Project details

Project site: www.touchlib.com
SVN: http://code.google.com/p/touchlib/
SVN (repository): http://touchlib.googlecode.com/svn/multitouch/

B.2 Touchlib config.xml

The configuration file consist out of the following parts:

1. XML version definition
example: <?xml version=”1.0” ?>

2. Tracker configuration
example:
<blobconfig distanceThreshold=”250” minDimension=”2” maxDimension=”250”
ghostFrames=”0” minDisplacementThreshold=”2.000000” />
Tolerance settings of the blobtracker. The distanceThreshold contains the value
of how many pixels a blob can travel. The minDimension and maxDimension
variables specify how small or large a contour can be to be detected as a touch.
The value of ghostFrames specifies the number of extra frames Touchlib should
use for the blobtracker. The minDisplacementThreshold specifies how many
pixels a contour needs to be moved before calling the update event.

3. Bounding box
example:
<bbox ulX=”0.000000” ulY=”0.000000” lrX=”1.000000” lrY=”1.000000” />
Specifies in which region blob detection should be applied.

4. Screen calibration points
example: <screen>...[points]...</screen>
These values will be filled when running the configapp.

5. The filtergraph
example: <filtergraph>...[filters]...</filtergraph>
Filters are explained in the next section.

B.3 Touchlib filters

General note: All filters need to be in between of the filtergraph tags.

< filtergraph > ... < /filtergraph >

The first filter in the filtergraph needs to be a video capture filter, the last one must
be the rectify filter.
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B.3.1 Video capture filters

cvcapture

Description:
This is the default video capture filter used by Touchlib. It uses OpenCV function to
capture a video stream. It is also possible to use a video file for testing purposes.
Usage (Video file):
<cvcapture label=”cvcapture”>
<source value=”../tests/rear4.avi” />
</cvcapture>

Usage (Camera):
<cvcapture label=”cvcapture”>
<source value=”cam” />
</cvcapture>

dsvlcapture

Description:
This is an implementation which uses DirectShow to capture a video stream.
Usage:
<dsvlcapture label=”dsvlcapture” />

cmucapture

Description:
This filter uses the CMU driver to access FireWire video capture devices.
Usage:
<cmucapture label=”cmucapture”>
<brightness value=”-1” />
<exposure value=”-1” />
<flipRGB value=”false” />
<gain value=”87” />
<gamma value=”1” />
<mode value=”640x480mono” />
<rate value=”30fps” />
<saturation value=”90” />
<sharpness value=”80” />
<whitebalanceH value=”0” />
<whitebalanceL value=”-1” />
</cmucapture>

vwcapture

Description:
This filter uses the VideoWrapper API to access FireWire video capture devices.
Usage:
<vwcapture label=”capture1”>
<videostring value=”pgr: 0 640 30 grey16 1 rgb” />
</vwcapture>

The videostring contain the camera parameters which depends on the interface type:
Cameras using DCAM specifications from Videre Design
Parameters: ”dcam: camNum width frameRate colorMode scale”
Example: ”dcam: 0 640 30 rgb 2”

Cameras from Point Grey Research
Parameters: ”pgr: camNum width frameRate colorMode scale outputMode”
Example: ”pgr: 0 640 30 grey8 1 rgb”

Cameras using VidCapture (DirectShow)
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Parameters: ”vc: camNum width frameRate colorMode scale outputMode”
Example: ”vc: 0 640 15 rgb 0”

B.3.2 Video processing filters

Mono filter

Description:
Touchlib requires an 8 bit grey scale source image. This filter is only required if the
video capture filter is not capable of delivering the right image format.
Usage:
<mono label=”monofilter” />

Background Filter

Description:
This filter removes the background by creating a reference image on initialization and
subtracting it from the current active frame.
Usage:
<backgroundremove label=”backgroundfilter”>
<threshold value=”20” />
</backgroundremove>
The threshold value has a range from 0-255.

Smoothing Filter

Description:
The smoothing filter applies a gaussian blur on the source image.
Usage:
<smooth label=”smoothfilter” />

Invert Filter

Description:
The filter inverts a greyscale image. This filter is only required for FI.
Usage:
<invert label=”invert” />

Scaler Filter

Description:
If the previous used filter gives a weak output the scaler filter is used to amplify the
current image.
Usage:
<scaler label=”scaler” >
<level value=”70” />
</scaler>

Brightness and Contrast Filter

Description:
In particular situation it might be required to adjust the image brightness and con-
trast. This filter is only used for FTIR
Usage:
<brightnesscontrast label=”brightnesscontrast4”>
<brightness value=”0.1” />
<contrast value=”0.4” />
</brightnesscontrast>
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Highpass Filter

Description:
When using RI or FI, the brightness of the blobs is much weaker compared to FTIR.
However if enough contrast is available the HighpassFilter is capable of amplifying
the output of these blobs.
Usage:
<highpass label=”highpass”>
<filter value=”6” />
<scale value=”32” />
</highpass>

Highpass Filter (Simple)

Description:
Same purpose as the previous filter, however it uses a simpler algorithm and therefore
performance faster than the default HighpassFilter. The filter contains two differ-
ent methods to amplify the source images, currently it is recommended to set the
noiseMethod to 1.
Usage:
<simplehighpass label=”simplehighpass”>
<blur value=”13” />
<noise value=”3” />
<noiseMethod value=”1” />
</simplehighpass>

Barrel Distortion Correction Filter

Description:
A wide-angle lens often contains a radial distortion which can not be corrected by
Touchlib default correcting algorithm. This filter corrects the barrel distortion based
on the lens characteristics. The filter requires a camera.yml file which is create by the
barrel distortion correction tool. Because the image get corrected, the result might
be missing out important parts. By setting the border size this can be corrected (if
not needed, set this to 0).
<barreldistortioncorrection label=”barreldistortioncorrection1”>
<border size value=”20” />
</barreldistortioncorrection>

Crop Filter

Description:
Allows the user crop the video image.
The values posX and posY define the top left position of the crop area. The height
and width define the crop area size.
<crop label=”crop”>
<posX value=”40” />
<posY value=”40” />
<height value=”120” />
<width value=”160” />
</crop>

Rectify Filter

Description:
This is the final filter of the image processing pipeline. The threshold is set to a
value in which blobs are visible but noise input is ignored. This image will be used
to perform blob detection on.
Usage:
<rectify label=”rectify”>
<level value=”75” />
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</rectify>
The level value has a range from 0-255.

B.4 Touchlib calibration

In order to calibrate the Touchlib it is required to have a fully functioning multi-
touch table (this includes a camera and projector). It is recommended to look at
the example xml files to create a config.xml configuration file. Every multi-touch
technique requires a different filter chain. When the filter chain has been set up, the
configuration application can be used by starting configapp.exe from the Touchlib bin
directory (or ./configapp from the /src directory under linux). It now displays the
filters you have entered in the config.xml file. Adjust the sliders in the filters until
the rectify filter only shows clear blobs when being touched. If you need to recapture
the background press ’b’.

When you are satisfied with the result of the filter chain you can start the actual
calibration. Press ’enter’ to go into full screen mode. The config application shows a
black background with 20 green colored reference points, 5 horizontal and 4 vertical.
In the upper left corner you will see an example of the camera input. If you do not
want to use the full size of your camera input it is possible to adjust the bounding box
by pressing ’x’. Please read the instruction on the screen to adjust this box. To start
the calibration press ’c’. The current point to select is red, including green arrows
rotating around the spot. If your camera is orientated differently (such as flipped
on the Y-axis) Touchlib will auto correct this on the first touch. Continue touching
the required points. When the calibration is finished you can test the accuracy by
touching the surface. It shows a rectangle shaped to the size of the ’press’. To exit
the configuration press ’ESC’. When the application quits all values are written to
the config.xml. If you need to adjust the calibration, you can adjust the values inside
the <screen>...</screen> tag.

B.5 TouchData structure

The range of the X and Y are from 0 to 1 (floating point).

Data type Variable name Properties
integer ID Unique identifier blob
integer tagID Unique identifier fiducial
float X Horizontal position
float Y Vertical position
float height Hight of fiducial
float width Width of fiducial
float angle Rotation of fiducial
float area Size of blob (pressure)
float dX Delta movement horizontal axis
float dY Delta movement vertical axis

Table B.1: TouchData structure
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APPENDIX C

Questionnaire

Experiment 1: Repetitive object pointing task

1. How well did the mouse device perform for this task?

a) Very poor (0%)

b) Poor (5%)

c) Fair (5%)

d) Good (90%)

e) Very good (0%)

2. How well did the multi-touch device perform for this task?

a) Very poor (0%)

b) Poor (0%)

c) Fair (20%)

d) Good (35%)

e) Very good (45%)

3. Which input device did you prefer for this set of tasks?

a) Mouse (20%)

b) Multi-touch device (75%)

c) No preference (5%)

Experiment 2: Object manipulation

4. How well did the mouse device perform for this task?

a) Very poor (0%)

b) Poor (5%)

c) Fair (25%)

d) Good (60%)

e) Very good (10%)

5. The mouse sensitivity for movement was:

a) Too little (10%)

b) Just right (90%)

c) Too much (0%)

6. The mouse sensitivity for rotation was:

a) Too little (15%)

b) Just right (75%)
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c) Too much (10%)

7. The mouse sensitivity for scaling was:

a) Too little (5%)

b) Just right (85%)

c) Too much (10%)

8. How well did the multi-touch device perform for this task?

a) Very poor (0%)

b) Poor (5%)

c) Fair (60%)

d) Good (30%)

e) Very good (5%)

9. The multi-touch sensitivity for movement was:

a) Too little (40%)

b) Just right (50%)

c) Too much (10%)

10. The multi-touch sensitivity for rotation was:

a) Too little (25%)

b) Just right (60%)

c) Too much (15%)

11. The multi-touch sensitivity for scaling was:

a) Too little (10%)

b) Just right (80%)

c) Too much (10%)

12. How easy was it for you to perform a gesture to manipulate objects (multi-touch
only)?

a) Very difficult (0%)

b) Rather difficult (15%)

c) Fair (40%)

d) Moderately easy (45%)

e) Very easy (0%)

13. Which input device do you prefer for this set of tasks?

a) Mouse (50%)

b) Multi-touch device (50%)

Experiment 3: Collaborative sorting task

14. How easy was it for you to perform a parallel dragging task?

a) Very difficult (0%)

b) Rather difficult (25%)

c) Fair (25%)

d) Moderately easy (35%)

e) Very easy (15%)
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Experiment 4: Collaborative point and selection task

Experiment 4a (Pointing task)

15. How easy was it for you to perform a parallel pointing task?

a) Very difficult (0%)
b) Rather difficult (10%)
c) Fair (15%)
d) Moderately easy (25%)
e) Very easy (50%)

Experiment 4b (Selection task)

16. How easy was it for you to perform a parallel selecting task (lasso)?

a) Very difficult (5%)
b) Rather difficult (40%)
c) Fair (10%)
d) Moderately easy (25%)
e) Very easy (20%)

Hardware

17. How well did the multi-touch device perform in responsiveness?

a) Very poor (0%)
b) Poor (20%)
c) Fair (40%)
d) Good (35%)
e) Very good (5%)

18. How well did the multi-touch device perform in precision?

a) Very poor (0%)
b) Poor (30%)
c) Fair (45%)
d) Good (20%)
e) Very good (5%)

Ergonomics

19. Did you feel any of the following problems when using the desktop (mouse) (you
may select multiple options)

a) General discomfort
b) Problems focusing
c) Watery eyes
d) Headache
e) Other: ...

20. Did you feel any of the following problems when using the multi-touch device
(you may select multiple options)

a) General discomfort
b) Problems focusing
c) Watery eyes
d) Headache
e) Other: ...
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General questions

21. What level of experience do you have with multi-touch devices:?

a) Beginner (70%)

b) Novice (15%)

c) Intermediate (15%)

d) Advanced (0%)

22. Did you feel you required more training to use an multi-touch device?

a) Yes (45%)

b) No (55%)

23. Which task did you find the most difficult to perform?

a) Experiment 1 (clicking objects) (0%)

b) Experiment 2 (object manipulation) (80%)

c) Experiment 3 (sorting task) (5%)

d) Experiment 4a (clicking objects in the right order) (0%)

e) Experiment 4b (selecting objects in the right order) (15%)

24. Were there special situations or personal (dis)abilities that influenced your par-
ticipation?

a) No (90%)

b) Yes, namely: ... (10%)

25. How did you experienced multi-touch interaction in general?

a) Very poor (0%)

b) Poor (0%)

c) Fair (20%)

d) Good (55%)

e) Very good (25%)

Feedback

26. Any remarks or personal opinions about the tests?
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APPENDIX D

Results Fitts test

D.1 Results 1D test

(a) Regression line (b) Residual

Figure D.1: The left image shows a scatter plot of the mouse device data set. The
x-axis represents the index of difficulty (ID), the y-axis the measured time (MT) to
complete the task. Linear regression is performed on the data set. The right image
shows the residual, which compares the predicted measurement time with the actual
measurement time.

(a) Regression line (b) Residual

Figure D.2: The left image shows a scatter plot of the multi-touch data set using the
3M digital projector. The x-axis represents the index of difficulty (ID), the y-axis the
measured time (MT) to complete the task. Linear regression is performed on the data
set. The right image shows the residual, which compares the predicted measurement
time with the actual measurement time.
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(a) Regression line (b) Residual

Figure D.3: The left image shows a scatter plot of the multi-touch data set (small
group) using the 3M digital projector. The x-axis represents the index of difficulty
(ID), the y-axis the measured time (MT) to complete the task. Linear regression is
performed on the data set. The right image shows the residual, which compares the
predicted measurement time with the actual measurement time.

(a) Regression line (b) Residual

Figure D.4: The left image shows a scatter plot of the multi-touch data set (small
group) using the Sharp digital projector. The x-axis represents the index of difficulty
(ID), the y-axis the measured time (MT) to complete the task. Linear regression is
performed on the data set. The right image shows the residual, which compares the
predicted measurement time with the actual measurement time.

.
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Results 2D test

D.2 Results 2D test

(a) Regression line (b) Residual

Figure D.5: The left image shows a scatter plot of the mouse device data set. The
x-axis represents the index of difficulty (ID), the y-axis the measured time (MT) to
complete the task. Linear regression is performed on the data set. The right image
shows the residual, which compares the predicted measurement time with the actual
measurement time.

(a) Regression line (b) Residual

Figure D.6: The left image shows a scatter plot of the multi-touch data set using the
3M digital projector. The x-axis represents the index of difficulty (ID), the y-axis the
measured time (MT) to complete the task. Linear regression is performed on the data
set. The right image shows the residual, which compares the predicted measurement
time with the actual measurement time.
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(a) Regression line (b) Residual

Figure D.7: The left image shows a scatter plot of the multi-touch data set (small
group) using the 3M digital projector. The x-axis represents the index of difficulty
(ID), the y-axis the measured time (MT) to complete the task. Linear regression is
performed on the data set. The right image shows the residual, which compares the
predicted measurement time with the actual measurement time.

(a) Regression line (b) Residual

Figure D.8: The left image shows a scatter plot of the multi-touch data set (small
group) using the Sharp digital projector. The x-axis represents the index of difficulty
(ID), the y-axis the measured time (MT) to complete the task. Linear regression is
performed on the data set. The right image shows the residual, which compares the
predicted measurement time with the actual measurement time.
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